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Statistical thermodynamics for MD and MC simulations

Introduction

Thermodynamic properties of molecular systems

how is the thermodynamic equilibrium characterized?

which quantities are of interest?

statistical mechanics: the way from the properties of particles
to the thermodynamic properties of ensembles
via the partition function

how to derive the ensemble partition function
from the partition function of a single molecule?

how is partition function connected to phase-space density?

MD simulation provides an alternative way
to thermodynamic quantities

it is difficult to obtain free energies
from normal simulations
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Introduction

Equilibrium and spontaneous processes

classical thermodynamics →
thermodynamic equilibrium and spontaneous process
says which quantites are maximized/minimized in equilibrium

and show a definite change during spontaneous processes

microcanonical ensemble:
equilibrium reached if entropy S is maximized
process is spontaneous if entropy increases: ∆S > 0

canonical ensemble – more complex because we need
to consider system of interest together with surroundings
(to identify equilibrium and spontaneity)

calculation on the supersystem impossible – an alternative needed
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Introduction

Free energy / enthalpy – fundamental property

How to keep our molecular system and drop the surroundings?
introduce a new thermodynamic function:

Helmholtz free energy F in canonical NVT ensemble

Gibbs free energy/enthalpy G in NPT ensemble

F = U − TS G = H − TS = U + pV − TS

F = F (T ,V ) or G = G (T ,P) – depends
on experimentally controllable variables T and V /P

an equilibrium state of the system
– minimum of F or G rather than of U
– equivalent to maximization of entropy of universe

F or G – decreases in the course of spontaneous process
– holy grail of MD simulation
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Entropy

Microscopic definition of entropy

W – number of ways (‘microstates’)
in which a certain ‘macrostate’ may be realized
(a certain occupation of energy levels of the system)

microscopic entropy:

S = kB · lnW

(kB – universal Boltzmann constant)
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Entropy

Microscopic definition of entropy

Ludwig Boltzmann – Austrian physicist
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Entropy

Microscopic definition of entropy

S tells us something about the travel of the system
through the configuration (phase) space

popular idea – S can be related to the order in the system

low entropy – few states are occupied
– only a small part of configuration space accessible
– ordered system

high entropy – many states are visited
– extended regions of the configuration space covered
– less ordered system

Example – pile of books on a desk
Jan Černý (Charles University in Prague, Dept Cellular Biology):

anthropy – “entropy of human origin”
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Canonical ensemble

Introduction

“. . . series of molecular structures generated by an MD simulation
with the Berendsen thermostat does not represent the correct
canonical ensemble” – what does this mean?

The phase space may be sampled (walked through) in various ways
– just what is the correct way?
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Canonical ensemble

Closed system – canonical ensemble

system in thermal contact with the surroundings
– temperature rather than energy remains constant
– Boltzmann distribution of probability Pi applies:

Pi =
exp[−β · εi ]

Q

Q =
∑
j

exp[−β · εj ]

Q – canonical partition function (Zustandssumme)

derive the meaning of β – fall back to basic thermodynamics. . . :

β =
1

kBT
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Canonical ensemble

Canonical partition function

Q – seems to be purely abstract. . .

but – to characterize the thermodynamics of a system
Q is completely sufficient,
all thermodynamic observables follow as functions of Q

how to obtain Q?
– there will be 2 ways, depending on the system studied

partition function connects the microscopic and macroscopic world
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Canonical ensemble

Using the partition function

we can get all thermodynamic functions from Q:

U = 〈E 〉 = kBT
2 ∂ lnQ

∂T

S = kBT ·
∂ lnQ

∂T
+ kB · lnQ

F = −kBT · lnQ

P = kBT ·
(
∂ lnQ

∂V

)
T

(equation of state)

H = U + pV

G = F + pV = H − TS

Michal Otyepka (Palacký University Olomouc, Dept Physical Chemistry):
“Just grab the partition function at the tail, and then you have everything!”
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Canonical ensemble

2 ways to thermodynamic properties

simple molecules with 1 or few minima of energy
– calculate the partition function (trans+vib+rot)

and employ some approximations (IG+HO+RR)
– derive properties from Q
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Discrete energy levels

Discrete systems

system with discrete energy levels εi – partition function:

Q =
∑
i

exp[−βεi ]

Boltzmann distribution function: (prob. of system in state εi )

Pi =
1

Q
exp[−βεi ]

example – HO: εi =
(
i + 1

2

)
· ~ω
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Discrete energy levels

Using the partition function of 1 molecule

partition function of a large system – simplifications possible:

system of n identical and indistinguishable particles (gas):

Q =
qn

n!

necessary effort reduced greatly!
– get the molecular partition function q

(calculate 1 molecule, or 2)
– obtain the ensemble partition function Q

and all thermodynamic quantities
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Discrete energy levels

Simple molecules

(1 or few well characterized minima = dominant structures)

for a certain minimum – consider contributions to energy:

E = E el + E trans + E rot + E vib

partition function follows as

Q = exp
[
−β
(
E el + E trans + E rot + E vib

)]
=

= exp[−βE el] · exp[−βE trans] · exp[−βE rot] · exp[−βE vib] =

= Qel · Qtrans · Qrot · Qvib

or

lnQ = lnQel + lnQtrans + lnQrot + lnQvib
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Discrete energy levels

Electronic partition function

usually: quite high excitation energy
→ electronic ground state only populated:

E el(0) = 0 arbitrarily

electronic partition function:

Qel = exp[−βE el(0)] + exp[−βE el(1)] + . . . ≈ 1 + 0 + . . . = 1

so this may be neglected ,
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Discrete energy levels

Translational partition function

calculated for quantum-mechanical particle (mass m) in a 3D box:
energy levels:

Enx ,ny ,nz =
h2

8m

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)

quantum numbers ni = 1, 2, . . .

partition function:

Qtrans =

(
2πmkBT

h2

)3
2

· V
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Discrete energy levels

Rotational partition function

calculated for a rigid rotor with moments of inertia Ix , Iy , Iz :
energy levels:

EJ = B · J(J + 1)

quantum number J = 0, 1, 2, . . ., degeneracy of levels 2J + 1

rotational constant Bx = h2

8π2Ix

Qrot =
∞∑
J=0

(2J + 1) exp

[
−J(J + 1) · B

kBT

]
for asymmetric top with rotational constants Bx , By , Bz :

Qrot =

√
π (kBT )3

BxByBz
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Discrete energy levels

Vibrational partition function

calculated with harmonic vibrational frequencies ωk of the molecule
(computation of Hessian in the minimum of potential energy)
– each vibrational mode k is one harmonic oscillator

energy levels: Em
k =

(
m + 1

2

)
· ~ωk

where E 0
k = 1

2~ωk is zero point vibrational energy

partition function (using
∑∞

n=0 x
n = 1

1−x ):

Qvib
k =

∞∑
m=0

exp

[
−β
(
m +

1

2

)
~ωk

]
=

exp
[
−1

2β~ωk

]
1− exp [−β~ωk ]

each molecule: N − 6 vibrational modes → N − 6 HOs
example – H2O: 3 modes (2 stretches, 1 bend)
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Discrete energy levels

Thermodynamic properties

for enthalpy – pV is needed – simple for IG:

pV = NkBT

then, enthalpy and Gibbs free energy follow:

H = U + pV = U + NkBT

G = F + pV = F + NkBT

thermal contributions – calculated by default
with many QCh and MD programs
whenever vibrational analysis is requested

reason – vibrational frequencies are computationally costly
while the thermodynamics is done ‘for free’
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Discrete energy levels

Example – vibrational contributions

lnQk = −1

2
β~ωk − ln

[
1− exp[−β~ωk ]

]
Uk = −∂ lnQk

∂β
= ~ωk

(
1

2
+

1

exp[β~ωk ]− 1

)
consider this for all of N − 6 vibrational DOFs, dropping ZPVE:

Uvib =
N−6∑
k=1

(
~ωk

exp[β~ωk ]− 1

)

F vib = −kBT lnQvib =
N−6∑
k=1

kBT ln
[
1− exp[−β~ωk ]

]
Svib

kB
=

Uvib − F vib

kBT
=

N−6∑
k=1

(
β~ωk

exp[β~ωk ]− 1
− ln

[
1− exp[−β~ωk ]

])
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2 ways to thermodynamic properties

simple molecules with 1 or few minima of energy
– calculate the partition function (trans+vib+rot)

(probably employ approximations IG+HO+RR)
– derive properties from Q

flexible molecules, complex molecular systems
– quantum mechanical energy levels cannot be calculated
– a single minimum of energy not meaningful
– do MD (MC) simulation instead, to sample phase space
– evaluate time averages of thermodynamic quantities
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Continuous distribution of energy

Systems with continuous distribution of energy

dynamics of molecules – at different tot. energies or temperatures,
differently extended regions of conformational space are sampled

complex energy landscape Epot(x)
blue and red – trajectories at different total energies

– different phase-space densities
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Continuous distribution of energy

Continuous systems – canonical ensemble

every point in phase space – a certain value of energy
composed of Epot = Epot(~r ) (force field), Ekin = Ekin(~p )

continuous energy levels – infinitesimally narrow spacing

canonical probability distribution function
– probability to find the system in state with E :

P(~r , ~p) = ρ(~r , ~p) =
1

Q
· exp

[
−E (~r , ~p)

kBT

]
partition fction Q – integral over phase space rather than sum

Q =

∫
exp

[
−E (~r , ~p)

kBT

]
d~r d~p

perform MD simulation with a correct thermostat, or MC sim.
– the goal is to obtain the right probability density ρ
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Continuous distribution of energy

Thermodynamic quantities – sampling

ρ(~r , ~p) – gives the probability of finding the system at (~r , ~p)
typically: system is sampling only a part of phase space (P 6= 0):

sampling in MD or MC undamped and damped classical HO
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Continuous distribution of energy

Thermodynamic quantities – sampling

thermodynamic quantities – weighted averages:

〈A〉 =

∫
A · ρ(~r , ~p) d~r d~p∫
ρ(~r , ~p) d~r d~p

why do MD? . . . obtain the correct phase-space density ρ
– the density ρ is present in the the trajectory inherently

→ e.g. structure with high ρ occur more often

thermodynamic quantities in MD simulation – time averages:

〈A〉 =
1

t1 − t0

∫ t1

t0

A(t) dt

– valid only if the simulation has sampled the canonical ensemble
→ phase-space density is correct – ergodic simulation
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Continuous distribution of energy

Thermodynamic quantities – sampling

Thus, we have the following to do:

perform MD simulation (with correct thermostat!)
→ trajectory in phase space
(simulation has ‘taken care’ of the phase-space density)

get time averages of desired thermodynamic properties

〈A〉 =
1

t1 − t0

∫ t1

t0

A(t) dt
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Aiming at free energies

Thermodynamic quantities – sampling

MD simulation serves to provide the phase-space density

ρ(~r , ~p) =
exp[−βE (~r , ~p)]

Q
~r = {r1, . . . , r3N}, ~p = {p1, . . . , p3N}

which is the probability of system occuring at point (~r , ~p)

How long an MD simulation can we perform?
1 ps → 1,000 points in trajectory
100 ns → 100M points – we cannot afford much more

let us think – we have 100M points
then, we have not sampled (~r , ~p) for which ρ(~r , ~p) < 10−8

→ points with high energy will be never reached!
(while low-energy region may be sampled well)

– actually, most of the points accumulate in low-energy regions,
so this is much more serious!
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Aiming at free energies

Missing high-energy points in sampling

High-energy points B and C may be sampled badly

– a typical problem in MD simulations of limited length
– the corresponding large energies are missing in averaging
– when does this matter?

– no serious error for the internal energy – exponential dependence
of phase-space density kills the contribution

ρ(~r , ~p) =
exp[−βE (~r , ~p)]

Q
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Aiming at free energies

Missing high-energy points in sampling

Free energies

determine the spontaneity of process

NVT canonical – Helmholtz function F

NPT ‘canonical’ – Gibbs function G

the relevant quantity always obtained depending on
whether NVT or NPT simulation is performed

much more pronounced sampling issues
than e.g. for internal energy!
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Aiming at free energies

Missing high-energy points in sampling

F = −kBT lnQ = kBT ln
1

Q
=

= kBT ln
c−1 ·

s
exp[βE (~r , ~p)] · exp[−βE (~r , ~p)] d~r d~p

Q
=

= kBT ln
c−1 ·

s
exp[βE (~r , ~p)] · exp[−βE (~r , ~p)] d~r d~p

Q
=

= kBT ln
x

exp[βE (~r , ~p)] · ρ(~r , ~p) d~r d~p − ln c =

= kBT · ln
〈

exp

[
E

kBT

]〉
− ln c

serious issue – the large energy values enter an exponential,
and so the high-energy regions may contribute significantly!
→ if these are undersampled, then free energies are wrong

– calculation of free energies impossible! special methods needed!
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