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LE><p|icit water models

Water in biomolecular simulations

most simulations — something in aqueous solutions
H,O — usually (many) thousands molecules

example — simulation of DNA decanucleotide:

m PBC box 3.9 x 4.1 x 5.6 nm (smallest meaningful)

m 630 atoms in DNA, 8346 atoms in water and 18 Nat
m concentration of DNA: 18 mmol/L — very high!
[

of all pair interactions: 86 % are water—water,
most of the others involve water
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Water models

most interactions involve H,O
— necessary to pay attention to its description

model of water must be simple enough (computational cost)
and accurate enough, at the same time

water models — usually rigid
— bond lengths and angles do not vary — constraints
molecule with three sites (atoms in this case), or up to six sites
— three atoms and virtual sites corresponding
to a ‘center’ of electron density or lone electron pairs
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Water models

TIP3P (very similar is SPC)
m most frequently used

m 3 atoms with 3 rigid bonds, charge on every atom
(—0.834/4-0.417)

m only the O possesses non-zero LJ parameters (optimization)
TIP4P
m negative charge placed on virtual site M rather than on the O
m electric field around the molecule described better
TIP5P
m 2 virtual sites L with negative charges near the O — lone pairs

m better description of directionality of H-bonding etc.
(radial distribution function, temperature of highest density)
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Water models

Calculated Eh sical Erneerties of the water models
= s S = Average i Expansion
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Alithe datais at 25 °C and 1 atm, except * at 20 °C and ** at 27 °C.
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Continuum electrostatics methods

Situation up to now
m molecules in an explicit solvent
m all interactions between atoms involved

m polarizability / permittivity of the solvent
— present in the simulation as a consequence
of interactions and dynamics

m for instance, solvation free energy is involved “by the way”
— if desired, may be evaluated with special methods
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Continuum electrostatics methods

Example — polypeptide in the a-helix and §-sheet conformations.
The free energy difference of the two structures is given by

m the difference of internal energies / enthalpies

m the entropic contributions — above all vibrational entropy

m the difference of free energies of solvation

a-helix: much larger dipole moment than (3-sheet

— a-helix is better solvated in a polar medium (H,0)

— crucial effect of solvation on the equilibrium
between conformations of solvated peptide

Motivation: the amount of solvent becomes excessive easily,
so it may be meaningful to abandon explicit solvent representation,
and apply an implicit model instead
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Continuum electrostatics methods

Solvation free energy: AGgoy = AGeay + AGygw + AGge

/
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continuum

m A cavity in the solvent is formed
— rearrangement of the solvent molecules
A Ge,y: decrease of S and loss of solvent—solvent interactions
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Continuum electrostatics methods

Solvation free energy: AGgoy = AGeay + AGygw + AGge

continuum

m A cavity in the solvent is formed
— rearrangement of the solvent molecules
A Ge,y: decrease of S and loss of solvent—solvent interactions

m solute—solvent interaction — van der Waals and electrostatic
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Solvent-accessible surface area

SASA — important concept

solvent-exposed surface of molecule as a solid body
reasonable approx.: AGg,, and AGyqw proportional to SASA.
total surface composed from surfaces of individual atoms S;
then: AGeay + AGuaw =Y ;¢ - S

alternative: obtain SASA by rolling a ball of a certain diameter
(typically 2.8 A to mimic H,O) on the molecular surface
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Solvent-accessible surface area

When does it work?

m if the electrostatic effect of the surrounding solvent dominates
(shielding of solvent-exposed charged side chains of proteins)
m not if there is specific solute—solvent interaction
(like hydrogen bonding)
Difficult example: dynamics of small peptides dissolved in water
— competition between various hydrogen-bonding patterns
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Continuum electrostatics methods

Big question: how to calculate AGge?

often used is the term “reaction field”

AGge = q- cbrf(F)

for moving the cavity with the solute from vacuo to the solvent
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Born and Onsager models

Born: the work to bring charge g from vacuo
into spherical cavity of radius a
in solvent with dielectric constant e:

2 1
AGele - _% (1 - 8>

e: 1 for vacuo (thus AGge = 0), 80 for water, 2 to 20 for protein

Onsager and Kirkwood: model for dipole i in cavity

20 —1) 1
b, — ST
rf 2¢4+1 a3 H

1
AGege = _Eq)rf',u
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Born and Onsager models

m simple models
m implemented in many standard programs

m quite unrealistic approximations even for small molecules

Extensions:

m polarizable continuum model (PCM) -
arbitrary surfaces constructed
with the use of vdW radii of individual atoms

m conductor-like screening models (COSMO) —
polarization of the dielectric (insulating) solvent
derived from scaled-conductor approximation.
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Poisson—-Boltzmann equation (PBE)

For big molecules, the simple models may be too simple and
inefficient at the same time :-(

other approximations — starting from Poisson's equation
VeVo = —47p

given — charge distribution p and dielectric constant ¢
to be found — potential ¢

possibility to solve:

— discretize on a 3D grid, ( ]

use finite differences

calc. ® on every grid point

iteratively —
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lons in the solvent

ions are very important — counterions compensate charged solute,
or salt mimicks physiologic conditions

the position of ions depends on the potential:

i D(r
Y

or: anions like to be where ® > 0, and cations like ® < 0

an additional term appears in Poisson’s equation:
linearized Poisson—Boltzmann equation at low ionic strength:

VeV = —4rp+e - k2 - d(r)
2 _ 8nq®l

e kBT
(ionic strength | = 35 Z,— c,-z,- , Cj concentration, z; charge of ion /)

with the Debye—HuckeI parameter K
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lons in the solvent — PBE

m charge distribution on the protein
polarizes the dielectric outside (“solvent”)
— screening of any solvent-exposed charges of the protein
effectively, charges pointing into the solvent will vanish nearly

m solvent ions will distribute to make
the overall charge distribution more uniform
if a negative charge points into the solvent,
a cation will be located close to it

The solvent around a protein should always be taken into account.

PBE — not efficient enough to be calculated in every MD step
— approximations are necessary
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Generalized Born model (GB)

idea — use the simple Born equation for MM atomic charges

1 q?
AGL =—(1-= i
ele — < 8) i 23/’

the interaction of individual charges changes in solution

lq qj
Eee = *Z I J:

I#J

_ qi - qj (_)Zq, qj

1751 s
giving another contribution to solvation free energy

1 1 qi - qj
AGele_ 2<1_€>ZJ

p
i# Y

solvation free energy = AGel|e AG?

ele
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Generalized Born model (GB)

problem 1 — Born's formula holds for interaction of charges
located in spherical cavities (with radii a;)

— only valid for charged bodies of general shapes if rj > a; + a;

— two extreme cases are covered:

2
q—’, if i = j (‘self-interaction, i.e. solvation energy)
aj
E =
u, if i #j and rjj — oo
rij

what to do at intermediate distances (2 A to 10 A)? interpolate!

2

1 1 gi - qj hij
AGge=—=(1—=]- f(ry) = \|r? + aia; —
ele 5 < e) . () (rij) ri + ajajexp 4213,
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Generalized Born model (GB)

Born's equation holds for a charged particle in contact with solvent

problem 2 — many charges are buried deeply inside the protein,
far from the solvent!
— solvation free energy may be overestimated heavily

possible solution — scale up a; in a reasonable way!

the most important task when using the GB method
— to use/calculate reasonable radii a;
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How to get the radii in GB

approximate interaction energy of a charge g; in the protein interior
with the solvent:

i 1 1 a;
AGe|e — —5 (1— €VV> /eXtIAdV

integration runs over
the ‘exterior’ of the protein

comparing with the Born formula, we find
1 1\ q¢? 1 1
Acgle<1>q' = :/ - dv
2 e/ aj aj ext F

r — distance from the charge to the point in the exterior of the
protein
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How to get the radii in GB

several GB models exist; generally, [_ . transformed to [ .

m GB molecular volume — with van der Waals radius «;:

1 1 1
L / = dVv
aj Q; int,r>a; I

— possibly longish calculation time

B pairwise models — the interior =~ union of atomic spheres

1 1 1
SR Bl I 1
aj o A spherej I

— this is insufficient because of partial overlap / void places
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How to get the radii in GB

several GB models exist; generally, [_ . transformed to [ .

m GB molecular volume — with van der Waals radius «;:

1 1 1
L / = dVv
aj Q; int,r>a; I

— possibly longish calculation time

m pairwise models — the interior &~ union of atomic spheres
empirical formula may be used instead:

bond angle
1 1 p_ 1 RV, &PV,
PO Y=Y - Z 5 Z 4
a; A - Ruaw,i RVdW’I. 7 ri K ri
nonbond P4VJ

- > S CCR(Ps, 1)

J )
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MM-PBSA

m another application of implicit solvent models

m free energies of binding of ligands to biomolecules
m post-processing approach to evaluate free energies
m a normal MD simulation is run,

and free energies are computed a posteriori

binding free energy obtained component-wise with various methods
solvation free energy — with Poisson—Boltzmann or so

non-polar contribution — SASA-dependent terms

configurational entropy — normal-mode analysis

very approximative, yet may still give results of good quality
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