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Explicit water models

Water in biomolecular simulations

most simulations – something in aqueous solutions
H2O – usually (many) thousands molecules

example – simulation of DNA decanucleotide:

PBC box 3.9× 4.1× 5.6 nm (smallest meaningful)

630 atoms in DNA, 8346 atoms in water and 18 Na+

concentration of DNA: 18 mmol/L – very high!

of all pair interactions: 86 % are water–water,
most of the others involve water
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Explicit water models

Water models

most interactions involve H2O
→ necessary to pay attention to its description

model of water must be simple enough (computational cost)
and accurate enough, at the same time

water models – usually rigid
– bond lengths and angles do not vary – constraints

molecule with three sites (atoms in this case), or up to six sites
– three atoms and virtual sites corresponding

to a ‘center’ of electron density or lone electron pairs
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Explicit water models

Water models

TIP3P (very similar is SPC)

most frequently used

3 atoms with 3 rigid bonds, charge on every atom
(−0.834/+0.417)

only the O possesses non-zero LJ parameters (optimization)

TIP4P

negative charge placed on virtual site M rather than on the O

electric field around the molecule described better

TIP5P

2 virtual sites L with negative charges near the O – lone pairs

better description of directionality of H-bonding etc.
(radial distribution function, temperature of highest density)
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Continuum solvation methods

Continuum electrostatics methods

Situation up to now

molecules in an explicit solvent

all interactions between atoms involved

polarizability / permittivity of the solvent
– present in the simulation as a consequence

of interactions and dynamics

for instance, solvation free energy is involved “by the way”
– if desired, may be evaluated with special methods
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Continuum electrostatics methods

Example – polypeptide in the α-helix and β-sheet conformations.

The free energy difference of the two structures is given by

the difference of internal energies / enthalpies

the entropic contributions – above all vibrational entropy

the difference of free energies of solvation

α-helix: much larger dipole moment than β-sheet
→ α-helix is better solvated in a polar medium (H2O)
→ crucial effect of solvation on the equilibrium

between conformations of solvated peptide

Motivation: the amount of solvent becomes excessive easily,
so it may be meaningful to abandon explicit solvent representation,
and apply an implicit model instead
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Continuum solvation methods

Continuum electrostatics methods

Solvation free energy: ∆Gsolv = ∆Gcav + ∆GvdW + ∆Gele

A cavity in the solvent is formed
– rearrangement of the solvent molecules

∆Gcav: decrease of S and loss of solvent–solvent interactions

solute–solvent interaction – van der Waals and electrostatic
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Continuum solvation methods

Solvent-accessible surface area

SASA – important concept

solvent-exposed surface of molecule as a solid body

reasonable approx.: ∆Gcav and ∆GvdW proportional to SASA.

total surface composed from surfaces of individual atoms Si

then: ∆Gcav + ∆GvdW =
∑

i ci · Si
alternative: obtain SASA by rolling a ball of a certain diameter
(typically 2.8 Å to mimic H2O) on the molecular surface
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Continuum solvation methods

Solvent-accessible surface area

When does it work?

if the electrostatic effect of the surrounding solvent dominates
(shielding of solvent-exposed charged side chains of proteins)

not if there is specific solute–solvent interaction
(like hydrogen bonding)

Difficult example: dynamics of small peptides dissolved in water
– competition between various hydrogen-bonding patterns
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Continuum electrostatics methods

Big question: how to calculate ∆Gele?

often used is the term “reaction field”

∆Gele = q · Φrf(~r)

for moving the cavity with the solute from vacuo to the solvent
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Continuum solvation methods

Born and Onsager models

Born: the work to bring charge q from vacuo
into spherical cavity of radius a
in solvent with dielectric constant ε:

∆Gele = −q2

2a

(
1− 1

ε

)
ε: 1 for vacuo (thus ∆Gele = 0), 80 for water, 2 to 20 for protein

Onsager and Kirkwood: model for dipole µ in cavity

Φrf =
2(ε− 1)

2ε+ 1
· 1

a3
· µ

∆Gele = −1

2
Φrf · µ
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Continuum solvation methods

Born and Onsager models

simple models

implemented in many standard programs

quite unrealistic approximations even for small molecules

Extensions:

polarizable continuum model (PCM) –
arbitrary surfaces constructed
with the use of vdW radii of individual atoms

conductor-like screening models (COSMO) –
polarization of the dielectric (insulating) solvent
derived from scaled-conductor approximation.
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Continuum solvation methods

Poisson–Boltzmann equation (PBE)

For big molecules, the simple models may be too simple and
inefficient at the same time :-(

other approximations – starting from Poisson’s equation

∇ε∇Φ = −4πρ

given – charge distribution ρ and dielectric constant ε
to be found – potential Φ

possibility to solve:
– discretize on a 3D grid,

use finite differences
calc. Φ on every grid point

iteratively
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Continuum solvation methods

Ions in the solvent

ions are very important – counterions compensate charged solute,
or salt mimicks physiologic conditions

the position of ions depends on the potential:

ρions =
∑
i

qi · ci · exp

[
−qi · Φ(r)

kBT

]
or: anions like to be where Φ > 0, and cations like Φ < 0

an additional term appears in Poisson’s equation:
linearized Poisson–Boltzmann equation at low ionic strength:

∇ε∇Φ = −4πρ+ ε · κ2 · Φ(r)

with the Debye–Hückel parameter κ2 = 8πq2I
ε·kBT

(ionic strength I = 1
2

∑
i ciz

2
i , ci concentration, zi charge of ion i)
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Continuum solvation methods

Ions in the solvent – PBE

charge distribution on the protein
polarizes the dielectric outside (“solvent”)
→ screening of any solvent-exposed charges of the protein

effectively, charges pointing into the solvent will vanish nearly

solvent ions will distribute to make
the overall charge distribution more uniform

if a negative charge points into the solvent,
a cation will be located close to it

The solvent around a protein should always be taken into account.

PBE – not efficient enough to be calculated in every MD step
→ approximations are necessary
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Continuum solvation methods

Generalized Born model (GB)

idea – use the simple Born equation for MM atomic charges

∆G 1
ele = −

(
1− 1

ε

)∑
i

q2i
2ai

the interaction of individual charges changes in solution

Eele =
1

2

∑
i 6=j

1

ε

qi · qj
rij

=

=
1

2

∑
i 6=j

qi · qj
rij
−1

2

(
1− 1

ε

)∑
i 6=j

qi · qj
rij

giving another contribution to solvation free energy

∆G 2
ele = −1

2

(
1− 1

ε

)∑
i 6=j

qi · qj
rij

solvation free energy = ∆G 1
ele + ∆G 2

ele
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Continuum solvation methods

Generalized Born model (GB)

problem 1 – Born’s formula holds for interaction of charges
located in spherical cavities (with radii ai )

– only valid for charged bodies of general shapes if rij � ai + aj
– two extreme cases are covered:

E =


q2i
ai
, if i = j (‘self-interaction, i.e. solvation energy)

qi · qj
rij

, if i 6= j and rij →∞

what to do at intermediate distances (2 Å to 10 Å)? interpolate!

∆Gele = −1

2

(
1− 1

ε

)
·
∑
i , j

qi · qj
f (rij)

f (rij) =

√√√√r2ij + aiaj exp

[
−

r2ij
4aiaj

]
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Continuum solvation methods

Generalized Born model (GB)

Born’s equation holds for a charged particle in contact with solvent

problem 2 – many charges are buried deeply inside the protein,
far from the solvent!

→ solvation free energy may be overestimated heavily

possible solution – scale up ai in a reasonable way!

the most important task when using the GB method
– to use/calculate reasonable radii ai
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Continuum solvation methods

How to get the radii in GB

approximate interaction energy of a charge qi in the protein interior
with the solvent:

∆G i
ele = −1

2

(
1− 1

εW

)∫
ext

q2i
r4

dV

integration runs over
the ‘exterior’ of the protein

comparing with the Born formula, we find

∆G 1
ele = −1

2

(
1− 1

ε

)
q2i
ai

→ 1

ai
=

∫
ext

1

r4
dV

r – distance from the charge to the point in the exterior of the
protein
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How to get the radii in GB

several GB models exist; generally,
∫
ext transformed to

∫
int

GB molecular volume – with van der Waals radius αi :

1

ai
=

1

αi
−
∫
int,r>αi

1

r4
dV

– possibly longish calculation time

pairwise models – the interior ≈ union of atomic spheres

1

ai
=

1

αi
−
∑
j 6=i

∫
sphere j

1

r4
dV

– this is insufficient because of partial overlap / void places
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Continuum solvation methods

How to get the radii in GB

several GB models exist; generally,
∫
ext transformed to

∫
int

GB molecular volume – with van der Waals radius αi :

1

ai
=

1

αi
−
∫
int,r>αi

1

r4
dV

– possibly longish calculation time

pairwise models – the interior ≈ union of atomic spheres
empirical formula may be used instead:

1

ai
=

1

λ · RvdW,i
− P1

1

R2
vdW,i

−
bond∑
j

P2Vj

r4ij
−

angle∑
j

P3Vj

r4ij

−
nonbond∑

j

P4Vj

r4ij
· CCF(P5, rij)
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Continuum solvation methods

MM-PBSA

another application of implicit solvent models

free energies of binding of ligands to biomolecules

post-processing approach to evaluate free energies

a normal MD simulation is run,
and free energies are computed a posteriori

binding free energy obtained component-wise with various methods
solvation free energy – with Poisson–Boltzmann or so
non-polar contribution – SASA-dependent terms
configurational entropy – normal-mode analysis

very approximative, yet may still give results of good quality
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