How to model water in simulations explicitly or implicitly

Marcus Elstner and Tomáš Kubař

2019, June 12

Explicit water models

Water in biomolecular simulations

most simulations – something in aqueous solutions H_2O – usually (many) thousands molecules

Water in biomolecular simulations

most simulations – something in aqueous solutions H_2O – usually (many) thousands molecules

example - simulation of DNA decanucleotide:

- PBC box $3.9 \times 4.1 \times 5.6$ nm (smallest meaningful)
- 630 atoms in DNA, 8346 atoms in water and 18 Na⁺
- concentration of DNA: 18 mmol/L very high!
- of all pair interactions: 86 % are water-water, most of the others involve water

Water models

most interactions involve H_2O

→ necessary to pay attention to its description model of water must be simple enough (computational cost) and accurate enough, at the same time

water models - usually rigid

bond lengths and angles do not vary – constraints

molecule with three sites (atoms in this case), or up to six sites

- three atoms and virtual sites corresponding

to a 'center' of electron density or lone electron pairs

Water models

- TIP3P (very similar is SPC)
 - most frequently used
 - 3 atoms with 3 rigid bonds, charge on every atom (-0.834/+0.417)

• only the O possesses non-zero LJ parameters (optimization) TIP4P

- negative charge placed on virtual site M rather than on the O
- electric field around the molecule described better

TIP5P

- 2 virtual sites L with negative charges near the O lone pairs
- better description of directionality of H-bonding etc. (radial distribution function, temperature of highest density)

Water models

Calculated physical properties of the water models						
Model	Dipole moment ^e	Dielectric constant	self-diffusion, 10 ⁻⁵ cm ² /s	Average configurational energy, kJ mol ⁻¹	Density maximum, °C	Expansion coefficient, 10 ⁻⁴ °C ⁻¹
SSD	2.35 [511]	72 [511]	2.13 [511]	-40.2 [511]	-13 [511]	-
SPC	2.27 [181]	65 [185]	3.85 [182]	-41.0 [185]	-45 [983]	7.3 [704] **
SPC/E	2.35 [3]	71 [3]	2.49 [182]	-41.5 [3]	-38 [183]	5.14 [994]
SPC/Fw	2.39 [994]	79.63 [994]	2.32 [994]	-	-	4.98 [994]
PPC	2.52 [3]	77 [3]	2.6 [3]	-43.2 [3]	+4 [184]	-
TIP3P	2.35 [180]	82 [3]	5.19 [182]	-41.1 [180]	-91 [983]	9.2 [180]
TIP3P/Fw	2.57 [994]	193 ^[994]	3.53 [994]	-	-	7.81 [994]
IAMOEBA	2.78 [2031]	80.7 [2031]	2.54 [2031]	-	4 [2031]	2.5 [2031]
QCT **	1.85 [1251]	-	1.5 [1251]	-42.7 [1251]	+10 [1251]	3.5 [1251]
TIP4P	2.18 [3,180]	53 ^{a [3]}	3.29 [182]	-41.8 [180]	-25 [180]	4.4 [180]
TIP4P-Ew	2.32 [649]	62.9 ^[649]	2.4 [649]	-46.5 ^[649]	+1[649]	3.1 ^[649]
TIP4P-FQ	2.64[197]	79 [197]	1.93 [197]	-41.4 [201]	+7 [197]	-
TIP4P/2005	2.305 [984]	60 ^[984]	2.08 [984]	-	+5 [984]	2.8 [984]
TIP4P/2005f	2.319 ^[1765]	55.3 ^[1765]	1.93 [1765]	-	+7 [1765]	-
OPC	2.48 [2168]	78.4 [2168]	2.3 [2168]	-	-1 [2168]	2.7 [2168]
SWFLEX-AI	2.69 [201]	116 [201]	3.66 [201]	-41.7 [201]		-
COS/G3 **	2.57 [704]	88 [704]	2.6 [704]	-41.1 [704]	-78 ^[1939]	7.0 [704]
COS/D2	2.55 [1617]	78.9 [1617]	2.2 [1617]	-41.8 [1617]	-	4.9 [1617]
GCPM	2.723 [859]	84.3 [859]	2.26 [859]	-44.8 [859]	-13 [859]	-
SWM4-NDP	2.461 [933]	79 [933]	2.33 [933]	-41.5 [933]	<-53 [1999]	-
BK3	2.644 [2080]	79 [2080]	2.28 [2080]	-43.32 [2080]	+4 [2080]	3.01 [2080]
SWM6	2.431 [1999]	78.1 ^[1999]	2.14 ^[1999]	-41.5 ^[1999]	-48 [1999]	-
TIP5P	2.29 [180]	81.5 [180]	2.62 [182]	-41.3 [180]	+4 [180]	6.3 [180]
TIP5P-Ew	2.29 [619]	92 [619]	2.8 [619]		+8 [619]	4.9 ^[619]
TTM2-F	2.67 [1027]	67.2 ^[1027]	1.4 [1027]	-45.1 [1027]	-	-
POL5/TZ	2.712 [256]	98 [256]	1.81 [256]	-41.5 [256]	+25 [256]	-
Six-site *	1.89 [491]	33 [491]	-	-	+14 [491]	2.4 [491]
Experimenta	2.95	78.4	2.30	-41.5 [180]	+3.984	2.53

All the data is at 25 °C and 1 atm, except * at 20 °C and ** at 27 °C.

Continuum electrostatics methods

Situation up to now

- molecules in an explicit solvent
- all interactions between atoms involved
- polarizability / permittivity of the solvent
 - present in the simulation as a consequence of interactions and dynamics
- for instance, solvation free energy is involved "by the way"
 if desired, may be evaluated with special methods

Continuum electrostatics methods

Example – polypeptide in the $\alpha\text{-helix}$ and $\beta\text{-sheet}$ conformations.

The free energy difference of the two structures is given by

- the difference of internal energies / enthalpies
- the entropic contributions above all vibrational entropy
- the difference of free energies of solvation

 $\alpha\text{-helix:}$ much larger dipole moment than $\beta\text{-sheet}$

- $\rightarrow \alpha$ -helix is better solvated in a polar medium (H₂O)
- \rightarrow crucial effect of solvation on the equilibrium between conformations of solvated peptide

Motivation: the amount of solvent becomes excessive easily, so it may be meaningful to abandon explicit solvent representation, and apply an implicit model instead

Continuum solvation methods

Continuum electrostatics methods

Solvation free energy: $\Delta G_{solv} = \Delta G_{cav} + \Delta G_{vdW} + \Delta G_{ele}$

Continuum solvation methods

Continuum electrostatics methods

Solvation free energy: $\Delta G_{solv} = \Delta G_{cav} + \Delta G_{vdW} + \Delta G_{ele}$

A cavity in the solvent is formed

- rearrangement of the solvent molecules

 ΔG_{cav} : decrease of S and loss of solvent-solvent interactions

Continuum electrostatics methods

Solvation free energy: $\Delta G_{solv} = \Delta G_{cav} + \Delta G_{vdW} + \Delta G_{ele}$

A cavity in the solvent is formed

- rearrangement of the solvent molecules

 ΔG_{cav} : decrease of S and loss of solvent-solvent interactions

■ solute-solvent interaction - van der Waals and electrostatic

Solvent-accessible surface area

SASA – important concept

- solvent-exposed surface of molecule as a solid body
- reasonable approx.: ΔG_{cav} and ΔG_{vdW} proportional to SASA.
- total surface composed from surfaces of individual atoms S_i

• then:
$$\Delta G_{cav} + \Delta G_{vdW} = \sum_i c_i \cdot S_i$$

 alternative: obtain SASA by rolling a ball of a certain diameter (typically 2.8 Å to mimic H₂O) on the molecular surface

Solvent-accessible surface area

When does it work?

- if the electrostatic effect of the surrounding solvent dominates (shielding of solvent-exposed charged side chains of proteins)
- not if there is specific solute-solvent interaction (like hydrogen bonding)
- Difficult example: dynamics of small peptides dissolved in water
 - competition between various hydrogen-bonding patterns

Continuum solvation methods

Continuum electrostatics methods

Big question: how to calculate ΔG_{ele} ?

often used is the term "reaction field"

$$\Delta G_{\rm ele} = q \cdot \Phi_{\rm rf}(\vec{r})$$

for moving the cavity with the solute from vacuo to the solvent

Continuum solvation methods

Born and Onsager models

Born: the work to bring charge q from vacuo into spherical cavity of radius ain solvent with dielectric constant ε :

$$\Delta G_{\mathsf{ele}} = -rac{q^2}{2a}\left(1-rac{1}{arepsilon}
ight)$$

arepsilon: 1 for vacuo (thus $\Delta G_{
m ele}=$ 0), 80 for water, 2 to 20 for protein

Onsager and Kirkwood: model for dipole μ in cavity

$$\begin{split} \Phi_{\mathsf{rf}} &=& \frac{2(\varepsilon-1)}{2\varepsilon+1} \cdot \frac{1}{a^3} \cdot \mu \\ \Delta G_{\mathsf{ele}} &=& -\frac{1}{2} \Phi_{\mathsf{rf}} \cdot \mu \end{split}$$

Born and Onsager models

- simple models
- implemented in many standard programs
- quite unrealistic approximations even for small molecules

Extensions:

polarizable continuum model (PCM) –

arbitrary surfaces constructed with the use of vdW radii of individual atoms

 conductor-like screening models (COSMO) – polarization of the dielectric (insulating) solvent derived from scaled-conductor approximation.

Poisson–Boltzmann equation (PBE)

For big molecules, the simple models may be too simple and inefficient at the same time :-(

other approximations - starting from Poisson's equation

 $\nabla \varepsilon \nabla \Phi = -4\pi \rho$

given – charge distribution ρ and dielectric constant ε to be found – potential Φ

possibility to solve:

 discretize on a 3D grid, use finite differences calc. Φ on every grid point iteratively

lons in the solvent

ions are very important – counterions compensate charged solute, or salt mimicks physiologic conditions

the position of ions depends on the potential:

$$\rho_{\text{ions}} = \sum_{i} q_{i} \cdot c_{i} \cdot \exp\left[-\frac{q_{i} \cdot \Phi(r)}{k_{\text{B}}T}\right]$$

or: anions like to be where $\Phi>0,$ and cations like $\Phi<0$

an additional term appears in Poisson's equation: linearized Poisson-Boltzmann equation at low ionic strength:

$$abla arepsilon
abla
abla \Phi = -4\pi
ho + arepsilon \cdot \kappa^2 \cdot \Phi(r)$$

with the Debye–Hückel parameter $\kappa^2 = \frac{8\pi q^2 I}{\varepsilon \cdot k_{\rm B} T}$ (ionic strength $I = \frac{1}{2} \sum_i c_i z_i^2$, c_i concentration, z_i charge of ion i)

lons in the solvent – PBE

 charge distribution on the protein polarizes the dielectric outside ("solvent") → screening of any solvent-exposed charges of the protein effectively, charges pointing into the solvent will vanish nearly
 solvent ions will distribute to make the overall charge distribution more uniform if a negative charge points into the solvent, a cation will be located close to it

The solvent around a protein should always be taken into account.

 $\mathsf{PBE}-\mathsf{not}$ efficient enough to be calculated in every MD step \rightarrow approximations are necessary

Continuum solvation methods

Generalized Born model (GB)

idea - use the simple Born equation for MM atomic charges

$$\Delta G^1_{\mathsf{ele}} = -\left(1-rac{1}{arepsilon}
ight)\sum_i rac{q_i^2}{2a_i}$$

the interaction of individual charges changes in solution

$$E_{\text{ele}} = \frac{1}{2} \sum_{i \neq j} \frac{1}{\varepsilon} \frac{q_i \cdot q_j}{r_{ij}} = \frac{1}{2} \sum_{i \neq j} \frac{q_i \cdot q_j}{r_{ij}} - \frac{1}{2} \left(1 - \frac{1}{\varepsilon} \right) \sum_{i \neq j} \frac{q_i \cdot q_j}{r_{ij}}$$

giving another contribution to solvation free energy

$$\Delta G_{\mathsf{ele}}^2 = -rac{1}{2}\left(1-rac{1}{arepsilon}
ight)\sum_{i
eq j}rac{q_i\cdot q_j}{r_{ij}}$$

solvation free energy $= \Delta \textit{G}_{ele}^1 + \Delta \textit{G}_{ele}^2$

Continuum solvation methods

Generalized Born model (GB)

problem 1 – Born's formula holds for interaction of charges located in spherical cavities (with radii a_i)

- only valid for charged bodies of general shapes if $r_{ij} \gg a_i + a_j$

- two extreme cases are covered:

$$E = \begin{cases} \frac{q_i^2}{a_i}, & \text{if } i = j \text{ (`self-interaction, i.e. solvation energy)} \\ \\ \frac{q_i \cdot q_j}{r_{ij}}, & \text{if } i \neq j \text{ and } r_{ij} \to \infty \end{cases}$$

what to do at intermediate distances (2 Å to 10 Å)? interpolate!

$$\Delta G_{\text{ele}} = -\frac{1}{2} \left(1 - \frac{1}{\varepsilon} \right) \cdot \sum_{i,j} \frac{q_i \cdot q_j}{f(r_{ij})} \qquad f(r_{ij}) = \sqrt{r_{ij}^2 + a_i a_j \exp\left[-\frac{r_{ij}^2}{4a_i a_j}\right]}$$

Generalized Born model (GB)

Born's equation holds for a charged particle in contact with solvent

problem 2 – many charges are buried deeply inside the protein, far from the solvent!

 \rightarrow solvation free energy may be overestimated heavily

possible solution – scale up a_i in a reasonable way!

the most important task when using the GB method - to use/calculate reasonable radii a_i

Continuum solvation methods

How to get the radii in GB

approximate interaction energy of a charge q_i in the protein interior with the solvent:

$$\Delta G_{\mathsf{ele}}^{i} = -\frac{1}{2} \left(1 - \frac{1}{\varepsilon_{W}} \right) \int_{\mathsf{ext}} \frac{q_{i}^{2}}{r^{4}} \, \mathrm{d}V$$

integration runs over the 'exterior' of the protein

comparing with the Born formula, we find

$$\Delta G_{\text{ele}}^1 = -\frac{1}{2} \left(1 - \frac{1}{\varepsilon} \right) \frac{q_i^2}{a_i} \quad \rightarrow \quad \frac{1}{a_i} = \int_{\text{ext}} \frac{1}{r^4} \, \mathrm{d} V$$

r – distance from the charge to the point in the exterior of the protein

Continuum solvation methods

How to get the radii in GB

several GB models exist; generally, \int_{ext} transformed to \int_{int} **GB** molecular volume – with van der Waals radius α_i :

$$\frac{1}{a_i} = \frac{1}{\alpha_i} - \int_{\mathrm{int}, r > \alpha_i} \frac{1}{r^4} \,\mathrm{d} V$$

- possibly longish calculation time

pairwise models – the interior \approx union of atomic spheres

$$\frac{1}{a_i} = \frac{1}{\alpha_i} - \sum_{j \neq i} \int_{\text{sphere } j} \frac{1}{r^4} \, \mathrm{d}V$$

$$= \text{this is insufficient because of partial overlap / void places}$$

Continuum solvation methods

How to get the radii in GB

several GB models exist; generally, \int_{ext} transformed to \int_{int} **GB** molecular volume – with van der Waals radius α_i :

$$\frac{1}{a_i} = \frac{1}{\alpha_i} - \int_{\mathrm{int}, r > \alpha_i} \frac{1}{r^4} \,\mathrm{d} V$$

- possibly longish calculation time

■ pairwise models – the interior ≈ union of atomic spheres empirical formula may be used instead:

$$\frac{1}{a_i} = \frac{1}{\lambda \cdot R_{\text{vdW},i}} - P_1 \frac{1}{R_{\text{vdW},i}^2} - \sum_j^{\text{bond}} \frac{P_2 V_j}{r_{ij}^4} - \sum_j^{\text{angle}} \frac{P_3 V_j}{r_{ij}^4}$$
$$- \sum_j^{\text{nonbond}} \frac{P_4 V_j}{r_{ij}^4} \cdot \text{CCF}(P_5, r_{ij})$$

MM-PBSA

- another application of implicit solvent models
- free energies of binding of ligands to biomolecules
- post-processing approach to evaluate free energies
- a normal MD simulation is run,

and free energies are computed a posteriori

binding free energy obtained component-wise with various methods solvation free energy – with Poisson–Boltzmann or so non-polar contribution – SASA-dependent terms configurational entropy – normal-mode analysis

very approximative, yet may still give results of good quality