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Molecular dynamics simulation

L Background

Motivation

A (bio)molecule in aqueous solution at ambient conditions
m structure is varying
m energy is fluctuating
B representation with a single, static structure — meaningless

B an interesting process may be going on ©
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L Background

State of the system

m (micro)state of a system:
positions r; and momenta p; of all the atoms

m configuration space — 3/N-dimensional space of coordinates
m phase space — 6N-dim. space of coords and momenta {7, p;}

m trajectory in phase space — sequence of points {ri(t), pi(t)}
passed by the system in course of time
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L Background

State of the system — example |

1D harmonic oscillator:
time course of coordinate and of velocity

r(t) = a-coswt]

v(t) = —aw-sinfwt]

plot of velocity vs. coordinate — in 2D phase space:
elliptic trajectory
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L Background

State of the system — example |

1D harmonic oscillator:
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conservative system — total energy remains conserved (constant)



Molecular dynamics simulation

L Background

State of the system — example |

1D harmonic oscillator:
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with friction or other damping
— the total energy of the system is decreasing
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L Background

State of the system — example Il

alanine dipeptide in aqueous solution:
config. space of dihedral angles ¢, (Ramachandran plot)
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L Background

State of the system — example Il

alanine dipeptide in aqueous solution:
config. space of dihedral angles ¢, (Ramachandran plot)
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Molecular dynamics simulation

L Background

Thermodynamic properties

MD simulation generates a trajectory in phase space
— snapshots {rj(tx), pi(tx)} in time instants tx (k =1,..., M)

Generally — obtain the average value of a property of interest
over all observed structures

For energy: evaluate Ej in every snapshot
and calculate the average:
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L Background

Thermodynamic properties

Still, there are issues:

m Do we have enough snapshots = all relevant conformations?
— convergence of the simulation

m How do we consider experimental conditions — temperature?

m Suppose we know the structure of the reactant.
How do we get the structure of the product?
or even the whole reaction path?

m Does the average of energy provide useful information?
What about free energies / entropy?
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L Background

Thermodynamic properties

Characteristics of (bio)molecular simulations:
m it is easy to derive the total energy — force field

m not so easy to make proper use of the energy function
to get the thermodynamic properties right

m it is all about thermodynamics
in possible contrast to quantum chemistry
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L Background

Thermodynamic properties

time average for energy and other properties of interest:

(A), 1 /t1 A(t)dt

B t]_—tO to

experimental sample — huge number of molecules,
all relevant conformations of molecule/solvent are present
— thermodynamic ensemble

How many molecules in the ensemble are found in {7}, pj}?
— phase-space density (per volume unit) p(7, p)
— ensemble average can be calculated:
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L Background

Thermodynamic properties

experiment — ensemble average is always measured
simulation — a single molecule — time average available

simulation — system is considered ergodic
— passes through all points of phase space
constituting the real ensemble,
provided the simulation is long enough
— implies:

proper sampling x danger of undersampling / lack of convergence



Molecular dynamics simulation

L Background

Déja vu — energy
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L Background

Déja vu — forces

V = V(r,-j) + V(rik)+ V(ry) + ...
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LIntegration of equations of motion

Equations of motion

total energy — Hamilton function (Hamiltonian):
H TevoltP Lo
pu— _ —_-—— — r

2m 2

equations of motion in Hamilton's formalism:

. _OH . OH
= =g
leading to ordinary differential eqn (ODE) of 2nd order
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LIntegration of equations of motion

Equations of motion

p = —7:F:—kr

equation of motion: m-F=—k-r
m MD - similar concept: consider x, y, z of atoms instead of r,
and take forces from the ‘long equation’
m Hamilton / Lagrange formalisms are more general

— other coordinates than x, y, z of atoms may be used
— internal coordinates ...

MD: very complex expression for the force
— no analytical solution — numerical solution is necessary
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LIntegration of equations of motion

(Too) simple numerical solution

F=f(rt)
common trick — Taylor expansion (At =t — tp):
r(t) = r(to) + F(to) - At + %F(to) A
Euler method — 1st-order approximation:
r(t) = r(to) + F(to) - At

Numerical integration starts at time ty — we make a step At:

F
a(to) = _E
r(to+ At) = r(to) + v(to) - At

v(to + At) = v(to) + a(to) - At
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L_The Verlet method

Verlet — normal form

Euler method — too large numerical error O(At?)
more accurate integration is needed

Verlet method:

Taylor expansion up to 2nd order,
derivation from two virtual steps, forwards and backwards:

r(t+At) = r(t)+ F(t) - At + 37(t) - A
r(t—At) = r(t) — F(t) - At + 37(t) - A

add both equations — eliminate the velocity r:
r(t+At) = 2-r(t) — r(t — At) + F(t) - At?
. F(t) 10V
t) = y=——~2 =———""(t
7(t) a(t) = — .
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L The Verlet method

Verlet — normal form

r(t+At) = 2-r(t) — r(t — At) + #(t) - At

r(t — At)? information equivalent to velocity,
so that initial conditions may be converted:

r(to — At) = r(to) — v(to) - At
velocities — not in there explicitly, but may be obtained:

Ht) = v(t) = r(t+ At2).—Art(t — At)

(Verlet normal form)
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L The Verlet method

Verlet — normal form

program for ‘astronomic’ simulations: (F = —1/r2- 7/r)

/* initial "old" positions from initial velocities */
for (k=0; k<DIM; k++)
r_old[k] = r[k] - v[k] * dt;

for (t=0.; t < CYCLES*PERIOD; t+=dt) {
/* distance (from the Sun) */
rnorm = sqrt(NORM2(r));
/* gravitation force (on the comet)
*f=-1/r"2
* multiply this by the unit vector in the direction of r

* f =-1/ r"2 * vector(r) / r
*/
for (k=0; k<DIM; Kk++)

flkl = - rlk]l / CUB(rnorm);

/* Verlet integrator */

for (k=0; k<DIM; k++) {
r new = 2 * r[k]l - r_old[k] + f[k] * SQR(dt);
r old[k] = r[kl;
r(kl = r_new;
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L The Verlet method

Velocity Verlet

another, equivalent formulation

m positions calculated first using velocities
r(t+ At) = r(t) + v(t) - At + 3a(t) - At?

m forces (— accelerations) calculated in new positions,
and new velocities obtained as

v(t+ At) = v(t) + 3 (a(t) + a(t + At)) - At

m next calculation of positions r. ..
MD is started with ry and vp.
Then, in every step, r(t + At) is calculated first
so that a(t + At) can be updated, to get v(t + At)
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L The Verlet method

Velocity Verlet

VV — better numerical precision than normal Verlet

numerical problem of normal Verlet:

m adding a small but important term 7(to)At? to
a large term calculated as difference: 2r(t) — r(t — At)

m large relative uncertainty
desirable — use an algorithm that
m is mathematically equivalent, and

m does not involve potentially problematic calculations
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L The Verlet method

Leap-frog

yet another equivalent formulation, similar to VV:
r and v are calculated in an alternating fashion:
r(t), v(t+ 3At), r(t+ At), v(t + 3At), r(t +2At) ...

m velocities at t + %At are obtained first:

v(t+ 3At) = v(t — 3At) + a(t) - At
m then, positions are updated at t + At:

r(t+ At) = r(t) + v(t + 3At) - At

So, accelerations have to be calculated at t, t + At, t + 2At...
from forces, and positions are needed to compute forces
(note: a(t) can only be calculated whenever r(t) are known)
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L The Verlet method

Initial conditions

To start the MD

— the positions ry and the velocities vy have to be specified
First step — calculations of forces at ry to get accelerations ag
Then — the integrator may provide r (and v) at time ty + At

To obtain a trajectory over a time interval T,
we perform M steps
— we have to evaluate the forces on all atoms M = T /At times

Computational cost of the calculation of forces
determines how many steps we can afford to make
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LTime step

At — crucial parameter

Numerical issue:

m we neglect contributions in At3 and higher orders
— error per step in the order of At3 (O(At3))

m keep the step short — make the error small

m disadvantage: we may need too many steps to simulate
certain time T

m trade-off: At too long — too large error
dynamics may deviate, momentum may not be conserved. ..
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LTime step

At — crucial parameter

Chemical issue:
m fastest motion — hydrogen atoms, period around 10 fs

m rule of thumb — stable integration with At < fastest period
(much more relaxed than in ‘astronomic’ simulations ®)

m practically, At of 1 fs is used (2 fs with special treatment)

— 1M calculations of forces needes for a trajectory of 1 ns
large systems — multi-ns simulations routinely, us possible
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LTime step

At — astronomic test

static heavy object (star) + moving light object (comet)
+ gravity (F = —1/r?) — dynamics with Verlet integrator

gravity — inverse-square law much like Coulomb between atoms
exact trajectory — periodic along an ellipse with star in 1 focus

simulation — four different values of the time step:
1x107>2, 2x107° 5x 1072 and 10 x 107> of the orbital period
— 100k, 50k, 20k and 10k steps per period — mmore than in MD
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LTime step

At — astronomic test

first 10 orbits are shown, and then the 100th shown again

credit for the idea: Ji¥i Kolafa, Prague
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LTime step

At — astronomic test

shortest step — reasonable trajectory, small deviation
2nd-longest step — error becomes evident
longest step — large deviation

important — trajectory is precessing (ellipse is ‘rotating’),
but it remains elliptic whatever the time step is
total energy and orbital period remain constant, also
— consequence of reversibility of Verlet:
if we reverse the course of time (At — —At),
we will simulate towards initial conditions of the trajectory

generally — energy in Verlet fluctuates (with longer step),
but it does not drift
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LMore advanced methods

Verlet or something better?

Verlet — very approximative yet still routinely used for MD
why? — because it is efficient — why?

m forces on atoms (— accelerations) calculated only 1x per step

m no higher derivatives of positions are involved

more accurate methods to integrate ODEs are available, and
are used in some applications, if improved accuracy is required

straightforward — involve extra terms from Taylor expansion
— hardly ever done, there are other ways to improve accuracy. ..
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LMore advanced methods

Gear integration: predictor—corrector

provides solution correct to an order of choice

new positions are calculated (predicted) from Taylor expansion
using a certain number of previous steps

then, forces (— accelerations)
are calculated in the predicted positions

accelerations used to make correction of positions
additional computational effort, decreased efficiency
accuracy may be improved significantly, longer step possible

still, only 1 calculation of forces per step
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LMore advanced methods

Gear integration: predictor—corrector

nth-order Gear integrator:
coords of all atoms 7 and their derivatives up to the order of n — 1:

r
r-At
R= S 1As2
r-3At
R VN~

for the 4th-order method

initialization: 7 and ¥ from init. conditions, 7 calculated from forces
— 1 calculation of forces required at start
higher derivatives may be set to zero
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LMore advanced methods

Gear: 1: prediction

MD step at time t starts with prediction
of coordinates+derivatives at time t + At:

1 111
01 23

Ro(t + At) = 00 13 - R(t)
0 001

m the matrix contains binomial coefficients

m the calculation passes a polynomial of order n — 1
through the previous n points of the trajectory
(at t, t — At,...t — (n—1)At)
and generates a point on this polynomial after At
m prediction may be good for continuous force functions

m no calculation of force up to this point!
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LMore advanced methods

Gear: 2: error

next, we calculate the error of the prediction:
we obtain the force at the predicted position,
and compare it with the force predicted in step 1 — error

1(f(R)
2 m

E= — 7, | At?

E — vector with as many components as the vector of coordinates
(every coordinate with its derivatives has ‘its own’ error)
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LMore advanced methods

Gear: 3: correction

Finally, using the error E, we calculate the corrected coordinates

and derivatives as
a0

ai
a
as

R(t+ At) = Ry(t + At) + E -

coefficients ag, a1...an_1
— estimated to prevent the accumulation of integration errors
— may be looked up in tables
— for 4th-order method for 2nd-order ODE
and forces not depending on velocities:

30:%,31:%,32:1and33:%
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LMore advanced methods

Gear — astronomic test

At =10x 1075 5x%x 1075 2 x 107% and 1 x 10~ of correct period
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LMore advanced methods

Gear — astronomic test

Gear may provide more accurate trajectories than Verlet,
with the same At

perfect trajectories with the two shortest time steps
(Verlet showed deviations even with the shortest step)

incorrect behavior with the second-largest step,
just wrong with the longest one

different character of deviation than with Verlet:
the elliptic trajectory of the comet is getting ‘shorter’,
rather than precessing

important: the orbital period is becoming shorter,
and total energy is decreasing
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LMore advanced methods

Gear — astronomic test

— . . . .
100% [~
3 98%~
I}
Q. L 5 i
5 - At=1x10°T
o - _ -5
S oenul Mt=2x10°T |
— At=5x10°T
L At=10x10°T i
94% - .
| | | . | | | | | | |
0 10 20 30 40 50

orbit #
general observation:

energy will decrease or increase (drift) in the simulation
this may be negligible with longer step / higher-order Gear
Gear: not reversible, does not conserve energy.



Molecular dynamics simulation

LMore advanced methods

Gear — higher order?

Verlet and Gear 4th, 5th and 6th
order (At =10 x 1075T)
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LMore advanced methods

Gear — higher order?

note: Verlet corresponds to 3th-order Gear formally
higher derivatives in calculation improve the results only slightly
— the drift of energy is slower but still unsatisfactory

general observations:

m when making the step shorter,
results of higher-order methods will improve faster

m when making the time step longer,
higher-order methods are more prone to fail completely
while lower-order methods are more robust

m higher-order integrators are a good choice
if accurate trajectories are desired

m |lower-order or Verlet integration is sufficient for applications
with ‘weaker’ requirements — typically, MD
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LMore advanced methods

Runge—Kutta integration

Runge—Kutta methods — numerical integrators of 1st-order ODEs
classical 4th-order method RK4:
m 4 calculations of the derivative in every step
m points at which the derivative is calculated
— chosen depending on the previous calculations,
— the first is done at the start of the integration step

g = r(r(t))

g = r(r(t)+ %goAt)
&L = r (r(t) + %glAt)
gz = r(r(t) + &At)

We calculate the value of the function at time t + At
using a weighted average of the obtained derivative values:

i1 = ro+ 3 (g0 + 281+ 28 +g3) - At
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LMore advanced methods

the RK4 method

derivative of y is calculated at points mg, my, my and ms3
calculated derivatives gp,. .. g3 are shown as arrows

X ¥+h/2 ¥+h

image downloaded from www.hsg-k1.de



Molecular dynamics simulation

LMore advanced methods

the RK4 method

actually predictor—corrector with 4 predictions per step

4 calculations of the derivative needed per step

[
[

m error per step reduced to O(At®) — 4th-order method

m solves 1st-order ODEs much like the Euler method does
n

to solve Newton eqns of motion (2nd-order ODEs)
— eqns are converted to system of two lst-order eqns
— positions and velocities of atoms are propagated:

F =

vV =

3w
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LMore advanced methods

the RK4 method

Can RK4 be used directly somewhere in computational chemistry?
Yes! Let us propagates a time-dependent Schrodinger equation
— 1st-order ODE for the wave function W of the system:

ov i~
— =——HV
ot h
m we express W as linear combination of suitable basis functions:

V= Zm Cm¥Pm
m Hamiltonian is a matrix of elements between basis functions:

Hmn = <30m"l:l‘90n>

m we calculate the derivative with matrix multiplication as H - W
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Constraints & restraints

Constraint
m condition that the system is required to meet
m example: a bond has length of d exactly: |A2|? = d?

m the associated mode of motion does not contain any energy

Restraint
m additional energy contribution in the force field
m example: using NMR-estimated distance of atoms j and k,
Viest = %krest(rjk - rNMR)2
B imposes an energy penalty on any deviation,
but still rjx is allowed to deviate from rymr

m the affected mode still contributes %kT to kinetic energy
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L Constraint dynamics

Constraint dynamics

Dynamics of large flexible (bio) molecules
— complex combination of different motions
High-frequency modes of motions — bond stretch / angle bend
— rather uninteresting, no need for exact description
Lower frequency modes — dihedrals and larger
— conformational changes, important, must be treated properly

Time step — directed by the highest-frequency modes involved
Idea — keep the bond lengths (or, additionally, angles) fixed,
and leave other modes of motion untouched
— introduce constraints
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L Constraint dynamics

Constraint dynamics

Formally:
Introduce additional (artificial) forces G on atoms,
which keep the bond lengths and, optionally, angles fixed:

mir; = Fi + G;

Technique:

integrate eqns of motion for one step with ‘normal’ forces I-:,
without considering G for now

determine the forces G required to satisfy constraints

correct the new atom positions

The math is somewhat complex. ..
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L Constraint dynamics

Constraint dynamics — details 1

Example: 3-atomic molecule, bonds 1-2 and 2-3 fixed, angle is free

Eqns of motion:

mn = F+G
mof, = F+ G
mars = F3+ G3

Constraints to be fulfilled:

b3 = r33—d3=0
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L Constraint dynamics

Constraint dynamics — details 2

Lagrangian mechanics provides the constraint forces, generally:

c 1

1
a = 5)\12 Vab12 + 5>\23 Vab23

with so-far undetermined Lagrange multipliers A

conditions for G_;:
m must be directed along bonds (to only affect the bond length)
m must obey Newton's 3rd law
Gl = A2fi2
Gy = —A2fi2 + A3i3
Gz = —Asm3
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L Constraint dynamics

Constraint dynamics — details 3

Modified eqn for the Verlet integrator:
At + At) = 7' (t + At) + At2/m; - G;

Insert the previously obtained constraint forces

A(t+At) = A'(t+At)+ At?/my - Moo

Blt+At) = B'(t+ At)+ AP /my - (—Ai2f2 + A23fs)

B(t+At) = B'(t+ At)+ At?/mz - (—Ax3i3)
Subtract eqns -1l and lI-IlI to obtain the lengths to be fixed

— obtain 2 conditions, from which
2 unknowns A1> and A>3 can be determined
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L Constraint dynamics

Constraint dynamics — details 4

fa(t + At) =

_l’_

Ra(t + At) =

fo'(t+ At) +
AP (mit 4+ myt) - Apfa — APmy - Apsids
r3'(t + At) —
APmyt - Apfin + A2 (myt + myt) - Masirs

take square modulus of both sides of eqns (|A2/%, ...)

apply constraints, |fi2|? = d2,, ...

obtain a set of quadratic eqns for A1»> and Ay3

solve, perhaps in a linearized form and iteratively

obtain the final new coordinates from (previous slide)

A(t+ At) = 7A'(t + At) + At?/my - M2fio
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L Constraint dynamics

SHAKE

Large (bio)molecule — large number of constraints n.

Set of eqns — solution requires inversion of an n. X n. matrix
— possibly time-consuming

SHAKE — an alternative algorithm:
m process the constraints one by one

m satisfying one constraint may violate another
— iterative procedure necessary

m run until all constraints are met within a preset tolerance

m angle constraints — re-formulate as bond constraints (rigid A)

Similar algorithms exist for other integrators,
e.g. RATTLE for velocity Verlet, to treat velocities
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L Constraint dynamics

LINCS

yet another constraint algorithm
m resets bond lengths after an unconstrained integration step

m non-iterative — always 2 steps:

d
v
. projecting out correction for
unconstrained . .
—= forces working ~— rotational
update .
along the bonds lengthening

B no expensive matrix operations
m faster and more stable than SHAKE

m available for bond constraints and isolated angle constraints
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L Constraint dynamics

SETTLE

specialized algorithm for rigid triangles — H,O
m 3 bond constraints for a molecule with 3 atoms
m analytical, non-iterative solution of SHAKE+RATTLE
m fulfills constraints exactly (— no tolerance values needed)

m faster than SHAKE — useful for molecules in aqueous solution

: 3 Vh\r:“:
=
: _ 2.

time = t + 5t Cs Vg

X
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L Constraint dynamics

Constraint dynamics

Condition

m no coupling between the constrained and
unconstrained modes of motion

Usual choices

m bonds with hydrogen
— At may be increased from 1 to 2 fs

m all bonds

m all bonds + all angles
— may look absurd, but is often a good idea for proteins
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L Restrained dynamics

Restrained molecular dynamics

Additional contributions in the eqn for total (potential) energy

m ‘penalty’ for deviation from a desired value of a coordinate

m generates additional force

m still, the coordinate may deviate from the reference value,
and fluctuate

position restraints, angle restraints, distance restraints,
orientation restraints and dihedral restraints



Molecular dynamics simulation

L Restrained dynamics

Position restraints

—

distance of an atom from a fixed reference position R;:

1 L 32
Viosres = Ekposres|ri - Ri‘

m to restrain e.g. the protein during equilibration
while the solvent is free to move
— prevent any unwanted drastic rearrangements

m to restrain the surroundings of a region of interest
whenever there is not enough info on the surroundings
— the region of interest is simulated without restrains
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L Restrained dynamics

Flat-bottomed position restraints

® no energy penalty up to a certain distance ry,
from the reference position

m restraints the atom to a volume rather than to a point

50

I
S

w
S

N
S

V(1) [kJimol]

o

\/fb o %kfbpr(r — rfb)2 if r > b
| ‘ ‘ 0 if r < rp

o

S
o
o
o
o
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L Restrained dynamics

Distance restraints

m penalty according to the distance between two atoms

m often — impose experimental restraints on molecular motion
e.g. from NMR or diffraction experiments

m MD - tool for structure refinement using NMR data

m optionally time- or ensemble-averaging

r=li-7
I I ir 3' 1 2 M
;'O o P e §kdr(r0 — r) ifr<n
15 .
2 v 0 fn<r<n
=5 dr = .
%kdr(r —n)? ifrn<r<n
b .
il %kdrr(rg—r1)+c ifr>n

0 0.1 0.2 0.3 0.4 05
r (nm)
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L Restrained dynamics

Restraints — further ideas

angle restraints — angle between two bonds
dihedral restraints
orientation restraints — angle of two vectors

time averaging for distance restraints
— so that fluctuations are not damped

m averaging over multiple pairs of atoms
— due to the nature of NMR data
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