
Molecular dynamics simulation

Molecular dynamics simulation
how to get things moving

Marcus Elstner and Tomáš Kubǎr

2018, April 27 & May 4



Molecular dynamics simulation

Background

Motivation

Consider a (bio)molecule in aqueous solution
at ambient conditions

structure is varying

interactions are varying (H-bonds)

the energy of the system is fluctuating

description with a single, static structure – meaningless

an interesting process may be going on ,

then, multiple ‘structures’ may be relevant



Molecular dynamics simulation

Background

State of the system

(micro)state of a system:
positions ~ri and momenta ~pi of all the atoms

configuration space – 3N-dimensional space of coordinates

phase space – 6N-dim. space of coords and momenta {~ri , ~pi}
trajectory in phase space – sequence of points {~ri (t), ~pi (t)}

passed by the system in course of time



Molecular dynamics simulation

Background

State of the system

example – 1D harmonic oscillator:
time course of coordinate and of velocity

r(t) = a · cos [ωt]

v(t) = −aω · sin [ωt]

plot of velocity vs. coordinate – in 2D phase space:
elliptic trajectory(

x(t)

a

)2

+

(
v(t)

a · ω

)2

= 1



Molecular dynamics simulation

Background

State of the system

Example – 1D harmonic oscillator:

Etot = Ekin + Epot =
1

2
mω2a2

conservative system – total energy remains conserved (constant)



Molecular dynamics simulation

Background

State of the system

Example – 1D harmonic oscillator:

with friction or other damping
– the total energy of the system is decreasing



Molecular dynamics simulation

Background

State of the system

Example – alanine dipeptide in aqueous solution:
config. space of dihedral angles ϕ− ψ (Ramachandran plot)



Molecular dynamics simulation

Background

State of the system

Example – alanine dipeptide in aqueous solution:
config. space of dihedral angles ϕ− ψ (Ramachandran plot)



Molecular dynamics simulation

Background

Thermodynamic properties

Back to the molecule in solution:
MD simulation – we generate a trajectory in phase space

for some time → snapshots {~ri (tk), ~pi (tk)},
evaluate energy in time instants tk (k = 1, . . . ,M) → Ek

and calculate the average:

〈E 〉t =
1

M

M∑
k=1

Ek

generally – we obtain the average value of the property of interest,
over all observed structures

to obtain the change of the property in a reaction:
we do this for the product and for the reactant,
obtain averages for both states and subtract them



Molecular dynamics simulation

Background

Thermodynamic properties

we obtain the trajectory by doing an MD simulation
– a good idea, but still there are issues:

Do we have enough snapshots? – all relevant conformations?

How do we consider experimental conditions – temperature?

Suppose we know the structure of the reactant.
How do we get the structure of the product?
or even the whole reaction path?

Does the average of energy provide useful information?
What about free energies / entropy?



Molecular dynamics simulation

Background

Thermodynamic properties

Characteristics of (bio)molecular simulations:

it is easy to derive the total energy – force field

not so easy to make proper use of the energy function
to get the thermodynamic properties right

it is all about thermodynamics
in possible contrast to quantum chemistry



Molecular dynamics simulation

Background

Thermodynamic properties

time average for energy and other properties of interest:

〈A〉t =
1

t1 − t0

∫ t1

t0

A(t) dt

experimental sample – huge number of molecules,
all relevant conformations of molecule/solvent are present

– thermodynamic ensemble

How many molecules in the ensemble are found in {~ri , ~pi}?
→ phase-space density (per volume unit) ρ(~r , ~p)
→ ensemble average can be calculated:

〈A〉e =

∫
A · ρ(~r , ~p) d~r d~p∫
ρ(~r , ~p) d~r d~p



Molecular dynamics simulation

Background

Thermodynamic properties

experiment – ensemble average is always measured
simulation – a single molecule – time average available

simulation – system is considered ergodic
– passes through all points of phase space
constituting the real ensemble
provided the simulation is long enough
– implies:

〈A〉t = 〈A〉e

the topic of sampling, danger of undersampling



Molecular dynamics simulation

Background

Déjà vu – energy

E (RN) =

=
1

2

∑
i

ki (ri − r0
i )2 +

1

2

∑
j

kϑj (ϑj − ϑ0
j )2 +

1

2

∑
n

Vn · cos [nω − γn]

+
N∑
i

N∑
j=i+1

{
4εij

((
σij
rij

)12

−
(
σij
rij

)6
)

+
1

4πε0

qiqj
rij

}



Molecular dynamics simulation

Background

Déjà vu – forces

V = V (rij) + V (rik) + V (ril) + . . .

F x
i = −∂V

∂xi
= −

∂V (rij)

∂rij

∂rij
∂xi
− ∂V (rik)

∂rik

∂rik
∂xi
− ∂V (ril)

∂ril

∂ril
∂xi
− . . .

~F1 = −k(r12 − r0) ·
~r12

r12



Molecular dynamics simulation

Integration of equations of motion

Equations of motion

total energy – Hamilton function (Hamiltonian):

H = T + V =
1

2

p2

m
+

1

2
kr2

equations of motion in Hamilton’s formalism:

ṙi =
∂H

∂pi
ṗi = −∂H

∂ri

leading to ordinary differential eqn (ODE) of 2nd order

ṙ =
∂H

∂p
=

p

m
→ p = mṙ → ṗ = m · r̈

ṗ = −∂H
∂r

= −∂V
∂r

= F

m · r̈ = F



Molecular dynamics simulation

Integration of equations of motion

Equations of motion

example – harmonic oscillator: H = 1
2
p2

m + 1
2kr

2

ṙ =
∂H

∂p
=

p

m

ṗ = −∂H
∂r

= F = −k · r

equation of motion:

m · r̈ = −k · r

We will use the same concept – considering x , y , z of all of the
atoms instead of r , and taking forces from the ‘long equation’

Hamilton / Lagrange formalisms are more general
– other coordinates than x , y , z of atoms may be used
– internal coordinates . . .



Molecular dynamics simulation

Integration of equations of motion

Relevant differential equations

1st-order ODE

generally: ẋ = f (x , t)

example: ẋ = −k · x
solution: x(t) = A · exp [−k · t]

e.g. radioactive decay, dynamics of populations



Molecular dynamics simulation

Integration of equations of motion

Relevant differential equations

2nd-order ODE:

ẍ = f (x , ẋ , t)

example: eqn of motion of harmonic oscillator ẍ = − k
m · x

with linear damping: ẍ = −ζ · ẋ − k
m · x

reduction of 2nd-order ODE to two 1st-order ODEs
by introducing velocity v :

ẋ = v

v̇ = −ζ · v − k

m
· x

these ODEs have to be solved numerically



Molecular dynamics simulation

Integration of equations of motion

(Too) simple numerical solution

r̈ = f (r , t)

common trick – Taylor expansion (∆t = t − t0):

r(t) = r(t0) + ṙ(t0) ·∆t +
1

2
r̈(t0) ·∆t2 + . . .

Euler method – 1st-order approximation:

r(t) ≈ r(t0) + ṙ(t0) ·∆t

Numerical integration starts at time t0 – we make a step ∆t:

a(t0) = −F

m
r(t0 + ∆t) = r(t0) + v(t0) ·∆t

v(t0 + ∆t) = v(t0) + a(t0) ·∆t



Molecular dynamics simulation

The Verlet method

Verlet – normal form

Euler method – too large numerical error O(∆t2)
more accurate integration is needed

Verlet method:
Taylor expansion up to 2nd order,
derivation from two virtual steps, forwards and backwards:

r(t + ∆t) = r(t) + ṙ(t) ·∆t +
1

2
r̈(t) ·∆t2

r(t −∆t) = r(t)− ṙ(t) ·∆t +
1

2
r̈(t) ·∆t2

add both equations – eliminate the velocity ṙ :

r(t + ∆t) = 2 · r(t)− r(t −∆t) + r̈(t)∆t2

r̈(t) = a(t) =
F (t)

m
= − 1

m

∂V

∂r
(t)



Molecular dynamics simulation

The Verlet method

Verlet – normal form

r(t + ∆t) = 2 · r(t)− r(t −∆t) + r̈(t)∆t2

strange – not only r(t) and a(t) needed, but also r(t −∆t)?
no problem – information equivalent to velocity, so that

initial conditions may be converted:

r(t0 −∆t) = r(t0)− v(t0) ·∆t

velocities – not in there explicitly, but may be obtained:

ṙ(t) = v(t) =
r(t + ∆t)− r(t −∆t)

2 ·∆t

(Verlet normal form)



Molecular dynamics simulation

The Verlet method

Verlet – normal form

program for ‘astronomic’ simulations: (~F = −1/r2 · ~r/r)



Molecular dynamics simulation

The Verlet method

Detailed balance

In equilibrium, this condition holds:
The rate of transitions from state i to state j
is the same as from j to i , on average.

In the other words: the flux of probability from state i to state j
is exactly balanced by the probability flux from j to i :

pi→j · ρeq
i = pj→i · ρeq

j

The probability ρ depends on the ensemble
(which in turn depends on the conditions):

isolated system – microcanonical ensemble:
principle of equal a priori probabilities, ρeq

i = ρ

closed system – canonical ensemble: ρeq
i ∝ exp[−βEi ]

Any MD algorithm/implementation shall observe detailed balance!



Molecular dynamics simulation

The Verlet method

Velocity Verlet

another, equivalent formulation

positions calculated first using velocities

r(t + ∆t) = r(t) + v(t) ·∆t + 1
2a(t) ·∆t2

forces (→ accelerations) calculated in new positions,
and new velocities obtained as

v(t + ∆t) = v(t) + 1
2

(
a(t) + a(t + ∆t)

)
·∆t

next calculation of positions r . . .

MD is started with the knowledge of r0 and v0

in every step, r(t + ∆t) is calculated first
so that a(t + ∆t) can be updated, to get v(t + ∆t)



Molecular dynamics simulation

The Verlet method

Velocity Verlet

VV – better numerical precision than normal Verlet
numerical problem of normal Verlet

– adding a small but important term r̈(t0)∆t2

to a large term calculated as difference: 2r(t)− r(t −∆t)
– large relative uncertainty

desirable – use an algorithm that is mathematically equivalent but
does not require to perform potentially problematic calculations



Molecular dynamics simulation

The Verlet method

Leap-frog

yet another equivalent formulation, similar to VV
– r and v are evaluated in an alternating fashion:
r(t), v(t + 1

2 ∆t), r(t + ∆t), v(t + 3
2 ∆t), r(t + 2∆t) . . .

velocities at t + 1
2 ∆t are obtained first:

v(t + 1
2 ∆t) = v(t − 1

2 ∆t) + a(t) ·∆t

then, positions are updated at t + ∆t:

r(t + ∆t) = r(t) + v(t + 1
2 ∆t) ·∆t

So, accelerations have to be calculated at t, t + ∆t, t + 2∆t. . .
from forces, and positions are needed to compute forces

– in fact, positions have to be known at the same t that we need a



Molecular dynamics simulation

The Verlet method

Initial conditions

To start the MD
– the positions r0 and the velocities v0 have to be specified

First step – calculations of forces at r0 to get accelerations a0

Then – the integrator may provide r (and v) at time t0 + ∆t

To obtain a trajectory over a time interval T ,
we perform M steps

– we have to evaluate the forces on all atoms M = T/∆t times

Computational cost of the calculation of forces
determines how many steps we can afford to make



Molecular dynamics simulation

Time step

∆t – crucial parameter

Numerical issue:

we neglect contributions in ∆t3 and higher orders →
error per step in the order of ∆t3 (O(∆t3))

keep the step short → make the error small

disadvantage: we may need too many steps to simulate
certain time T

trade-off: ∆t too long → too large error
dynamics may deviate, momentum may not be conserved. . .



Molecular dynamics simulation

Time step

∆t – crucial parameter

Chemical issue:

fastest motion – hydrogen atoms, period around 10 fs

rule of thumb – stable integration with ∆t ≤ fastest period
(much more relaxed than in ‘astronomic’ simulations ,)

practically, ∆t of 1 fs is used (2 fs with special treatment)

→ 1M calculations of forces needes for a trajectory of 1 ns
large systems – multi-ns simulations routinely, µs possible



Molecular dynamics simulation

Time step

∆t – astronomic test

static heavy object (star) + moving light object (comet)
+ gravity (F = −1/r2) → dynamics with Verlet integrator

gravity – inverse-square law much like Coulomb between atoms
exact trajectory – periodic along an ellipse with star in 1 focus

simulation – four different values of the time step:
1×10−5, 2×10−5, 5×10−5 and 10×10−5 of the orbital period

→ 100k, 50k, 20k and 10k steps per period – mmore than in MD



Molecular dynamics simulation

Time step

∆t – astronomic test

first 10 orbits are shown, and then the 100th shown again

credit for the idea: Jǐŕı Kolafa, Prague



Molecular dynamics simulation

Time step

∆t – astronomic test

shortest step – reasonable trajectory, small deviation
2nd-longest step – error becomes evident
longest step – large deviation

important – trajectory is precessing (ellipse is ‘rotating’),
but it remains elliptic whatever the time step is

constant remain also total energy and orbital period
– consequence of reversibility of Verlet:
if we reverse the course of time (∆t → −∆t),

we will simulate towards initial conditions of the trajectory

generally – energy in Verlet fluctuates (with longer step),
but it does not drift



Molecular dynamics simulation

More advanced methods

Verlet or something better?

Verlet – very approximative yet still routinely used for MD
why? – because it is efficient – why?

forces on atoms (→ accelerations) calculated only 1× per step

no higher derivatives of positions are involved

more accurate methods to integrate ODEs are available, and
are used in some applications, if improved accuracy is required

straightforward – involve extra terms from Taylor expansion
– hardly ever done, there are other ways to improve accuracy. . .



Molecular dynamics simulation

More advanced methods

Gear: predictor–corrector

provides solution correct to an order of choice

new positions are calculated (predicted) from Taylor expansion
using a certain number of previous steps

then, forces (→ accelerations)
are calculated in the predicted positions

accelerations used to make correction of positions

additional computational effort, decreased efficiency

accuracy may be improved significantly, longer step possible

still, only 1 calculation of forces per step



Molecular dynamics simulation

More advanced methods

Gear: predictor–corrector

nth-order Gear integrator:
coords of all atoms ~r and their derivatives up to the order of n− 1:

R =


~r

~̇r ·∆t

~̈r · 1
2 ∆t2

...
~r · 1

6 ∆t3


for the 4th-order method

initialization: ~r and ~̇r from init. conditions, ~̈r calculated from forces
– 1 calculation of forces required at start

higher derivatives may be set to zero



Molecular dynamics simulation

More advanced methods

Gear: 1: prediction

MD step at time t starts with prediction
of coordinates+derivatives at time t + ∆t:

Rp(t + ∆t) =


1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

 · R(t)

the matrix contains binomial coefficients

the calculation passes a polynomial of order n − 1
through the previous n points of the trajectory
(at t, t −∆t,. . . t − (n − 1)∆t)
and generates a point on this polynomial after ∆t

prediction may be good for continuous force functions

no calculation of force up to this point!



Molecular dynamics simulation

More advanced methods

Gear: 2: error

next, we calculate the error of the prediction:
we obtain the force at the predicted position,
and compare it with the force predicted in step 1 → error

E =
1

2

(
~f (~rp)

m
− ~̈rp

)
∆t2

E – vector with as many components as the vector of coordinates
(every coordinate with its derivatives has ‘its own’ error)



Molecular dynamics simulation

More advanced methods

Gear: 3: correction

Finally, using the error E , we calculate the corrected coordinates
and derivatives as

R(t + ∆t) = Rp(t + ∆t) + E ·


a0

a1

a2

a3


coefficients a0, a1. . . an−1

– estimated to prevent the accumulation of integration errors
– may be looked up in tables
– for 4th-order method for 2nd-order ODE

and forces not depending on velocities:

a0 = 1
6 , a1 = 5

6 , a2 = 1 and a3 = 1
3



Molecular dynamics simulation

More advanced methods

Gear – astronomic test

∆t = 10× 10−5, 5× 10−5, 2× 10−5 and 1× 10−5 of correct period



Molecular dynamics simulation

More advanced methods

Gear – astronomic test

Gear may provide more accurate trajectories than Verlet,
with the same ∆t

perfect trajectories with the two shortest time steps
(Verlet showed deviations even with the shortest step)

incorrect behavior with the second-largest step,
just wrong with the longest one

different character of deviation than with Verlet:
the elliptic trajectory of the comet is getting ‘shorter’,
rather than precessing

important: the orbital period is becoming shorter,
and total energy is decreasing



Molecular dynamics simulation

More advanced methods

Gear – astronomic test

general observation:
energy will decrease or increase (drift) in the simulation
this may be negligible with longer step / higher-order Gear

Gear: not reversible, does not conserve energy.



Molecular dynamics simulation

More advanced methods

Gear – higher order?

Verlet and Gear 4th, 5th and 6th
order (∆t = 10× 10−5T )



Molecular dynamics simulation

More advanced methods

Gear – higher order?

note: Verlet corresponds to 3th-order Gear formally
higher derivatives in calculation improve the results only slightly
– the drift of energy is slower but still unsatisfactory

general observations:

when making the step shorter,
results of higher-order methods will improve faster

when making the time step longer,
higher-order methods are more prone to fail completely
while lower-order methods are more robust

higher-order integrators are a good choice
if accurate trajectories are desired

lower-order or Verlet integration is sufficient for applications
with ‘weaker’ requirements – typically, MD



Molecular dynamics simulation

More advanced methods

Runge–Kutta integration

Runge–Kutta methods – numerical integrators of 1st-order ODEs
classical 4th-order method RK4:

4 calculations of the derivative in every step

points at which the derivative is calculated
– chosen depending on the previous calculations,
– the first is done at the start of the integration step

g0 = ṙ (r(t))

g1 = ṙ
(
r(t) + 1

2g0∆t
)

g2 = ṙ
(
r(t) + 1

2g1∆t
)

g3 = ṙ (r(t) + g2∆t)

We calculate the value of the function at time t + ∆t
using a weighted average of the obtained derivative values:

rn+1 = rn + 1
6 (g0 + 2g1 + 2g2 + g3) ·∆t



Molecular dynamics simulation

More advanced methods

the RK4 method

derivative of y is calculated at points m0, m1, m2 and m3

calculated derivatives g0,. . . g3 are shown as arrows

image downloaded from www.hsg-kl.de



Molecular dynamics simulation

More advanced methods

the RK4 method

actually predictor–corrector with 4 predictions per step

4 calculations of the derivative needed per step

error per step reduced to O(∆t5) – 4th-order method

solves 1st-order ODEs much like the Euler method does

to solve Newton eqns of motion (2nd-order ODEs)
– eqns are converted to system of two 1st-order eqns
– positions and velocities of atoms are propagated:

~̇r = ~v

~̇v =
~f

m



Molecular dynamics simulation

More advanced methods

the RK4 method

Can RK4 be used directly somewhere in computational chemistry?
Yes! Let us propagates a time-dependent Schrödinger equation

– 1st-order ODE for the wave function Ψ of the system:

∂Ψ

∂t
= − i

~
ĤΨ

we express Ψ as linear combination of suitable basis functions:
Ψ =

∑
m cmϕm

Hamiltonian is a matrix of elements between basis functions:
Hmn =

〈
ϕm

∣∣∣Ĥ∣∣∣ϕn

〉
we calculate the derivative with matrix multiplication as H ·Ψ


	Background
	Integration of equations of motion
	The Verlet method
	Time step
	More advanced methods

