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Introduction

Modeling of biomolecules

Potential energy surface: E, = Ej(R1,...,Ry)
(coordinates of atoms/nuclei R1,...,Ry)

Approximations:

m Born—-Oppenheimer approximation
m separation of nuclei and electrons
m £, obtained for fixed positions of nuclei
m Classical description of nuclei
m rather than quantum mechanics
for the motion of the nuclei
m Application of a force field

m harmonic springs
m point-charge electrostatics
" ...




Introduction
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Geometry optimization

Potential energy surface

electronic energy is a function of coordinates of nuclei {R;}
E=E(Ry,...,Ry)
— electronic energy defines the potential energy surface (PES)

example: a diatomic molecule

— all of the calculations only provide the PES point-wise



Geometry optimization

Sampling of the potential energy surface

chemically interesting:
stationary points
on the PES
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®E minimum:
‘equilibrium’ structure,
stable conformation of a molecule

m saddle point of 1st order:
transition state (TS),
point of maximum energy along the direction of a ‘reaction’



Geometry optimization

Potential energy surface
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m minimum: any change of structure — increase of energy

m saddle point of 1st order: maximum along one coordinate,
(reaction coordinate) x minimum along any other coordinate



Geometry optimization

Characterization of stationary points

How shall we find the interesting stationary points?
Example: Minimum of energy of a diatomic molecules
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m condition for a stationary points: ad - 0

d?E

m additional condition for a minimum: 482 >0



Geometry optimization

Characterization of stationary points

How shall we find the interesting stationary points?
generally: 3N atom coordinates; E = E(Ry,...,Ry)

Condition for stationary points:

dE dE dE dE dE\"
Gradient g=VE=(—,—, —,—,...,— | =0
radient- & <dX1 dy1 d21 dX2 dZN>
Second derivatives:
d’E d2E d’E d2E
dxl2 dxidys  dxidzi  dxidx
d?E d’E d2E d2E

Hessian: H = dyrdx dy? dyidz1  dyidx;

m Condition for minimum: all eigenvalues of H are positive

m Saddle point of 1st order: one eigenvalue of H is negative,
all of the others are non-negative



Geometry optimization

Geometry optimization = Energy minimization

— search for a local minimum, starting from a suitable structure

guess a starting structure

(obtain wave function)
calculate energy

gradient

calculate gradient is small

gradient is|too large

— determine a new structure

end

m starting structure?
— depends on the
chemical problem

m convergence criterion? e.g.

gl = D g, <t
l,c

m how shall we determine
the new structure?

m try to make as few steps as possible
(calculation of energy/gradients is expensive)

m avoid any calculation of Hessian
(that is even more expensive)



Geometry optimization

Geometry optimization = Energy minimization

How to make a step towards a minimum?

Example: geometry optimization of a diatomic molecule
E
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Gradient
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m follow the negative of gradient: R;11 = Ri+ AR; = R; — ag;

m how shall the step length a be determined?



Geometry optimization

Steepest descents optimization

m Step along the negative of gradient

AR;=ad; d;=—g;

m Choice of the step length a? -
m too short — too many steps needed >
m too long — overshoot the minimum

m ‘line search’:

choose « such that the energy =
in direction of gradient d; = —g; ﬁ@x -‘k,‘

is minimized o
— calculate the energy '
at several points along a line

m Then, the convergence is guaranteed.



Geometry optimization

Conjugate gradient optimization

Problems of steepest descents

m too many steps in similar

directions (in narrow valleys) o
B convergence is getting slower

when close to the minimum
Solution — conjugate gradient optimization

m make the step d; orthogonal to all of the previous ones

di=—g;+pidi
m various schemes: Fletcher—Reeves or Polak—Riebere:
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Geometry optimization

Newton—Raphson optimization

Taylor expansion of the PES around R;:
E(R)=E(R)+g-(R-R)+3(R-R)"-Hi-(R-R)+---

minimum of this Taylor expansion up to the 2nd order:

dE

de:gi—l-H,"(R—Ri):O—)H,"(R—Ri):—gi

Newton—Raphson optimization:
calculate the step toward the minimum from that expression:
-1
AR;=—-H;" -g;
(on a harmonic PES, this would lead to the minimum directly)

Problem: the calculation of Hessian in every step is expensive



Geometry optimization

Quasi-Newton optimization

Apply an approximated Hessian rather than the exact Hessian

start e.g. with a unit matrix (— 1 steepest-descents step)

other starting Hessians may be better
— full calculation (just once), or from certain simple rules

m in every step, use the gradients g;
to improve the approximated Hessian H;,
then invert it for AR; = —Hlfl -5

usually converges quickly and reliably, at the cost of
storage for Hessian of O(N?) and its inversion of O(N3)

compare: CG is O(N) but converges more slowly

a standard method in most quantum chemical / MD packages



Geometry optimization

Quasi-Newton optimization

various update algorithms are available
m Broyden—Fletcher—Goldfarb—Shanno (BFGS):

Hipi=H;+ Ag,-t® Agi _Hi AR 8 AR; - H,
Ag;-AR; Ag,?'H,--AR,-
— symmetric and positive-definite

— minimizes the change in Hessian

m limited-memory BFGS (L-BFGS)
— propagate the inverse Hessian (not the Hessian itself)
— the O(N3) matrix inversion is eliminated
— do not store the Hessian or inverse Hessian in memory
— rather, reconstruct the matrix on the fly
from Ag; & AR; over a few (< 10) last steps
— the O(N?) storage requirement is eliminated



Geometry optimization

Quasi-Newton optimization

g-N converges the better, the closer PES is to a quadratic form
— depends on the choice of coordinate system strongly

Possible choices of coordinate system

m cartesian coordinates
— simple, but not adjusted to a ‘chemical’ problem
— often slow convergence

m internal coordinates
— use bond lengths, angles and torsional angles
— often good convergence
— but the definition of 3N — 6 coordinates difficult

m redundant internal coordinates
— use 'too many’ internal coordinates
— mostly good convergence
— simple automatized definition is possible

m more complex coordinate systems possible



Geometry optimization

Quasi-Newton optimization

Choose coordinate system;
Input starting geometry;
Obtain initial estimate of Hessian.

'S

Calculate energy and gradient.

-

Update the Hessian.

_ v

J Use Hessian and gradient to take a step.

Employ RFO or TRM.
Check for convergence. yes
‘ no
yes
Check for maximum cycles. Stop
I no

Update geometry.




Geometry optimization

Summary: geometry optimization

starting point: a chemically meaningful structure

minimization procedures:

m steepest descents: converges always, but slowly
m better: conjugate gradients, quasi-Newton (e.g. BFGS)
— all of these avoid the calculation of Hessian

m biomolecules — often very difficult to find true minima

in the quantum chemistry

m calculations mostly limited to a single minimum
m starting point for the calculation of properties (spectra. . .)

m with the force field methods

m starting point for MD — steepest descents is often good enough
m pre-optimization for quantum chemical calculations



Molecular mechanics?

Limitations of the force field approximation

The parameters have to be determined / fitted
m difficult for certain / unusual elements (e.g., transition metals)
Conceptual limitations

m chemical bonds cannot be broken or created
m atom types are pre-determined
m atomic charges are pre-determined and constant
— no change of electron density can be described

Electrons are not described explicitly, so no wave function

m only ground-state energy and forces are available
m no spectroscopic properties (interaction with light)

m no photochemistry (excited states)



Molecular mechanics?

Quantum chemistry vs. force fields

Quantum mechanics:

electronic wave functions: We = W (ry,...,ry)
(coordinates of electrons rq,...,ry)

solve the electronic Schrédinger equation

ARMARY — E\(Ry, ..., Ry)VIR

Quantum chemistry

m wave function theory (WFT)
m density functional theory (DFT)

— calculation of energy is computationally intensive

Force field methods

m evaluate E ‘directly’, do not look for the electronic structure

— calculation of energy is very quick and efficient
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