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Introduction

Modeling of biomolecules

Potential energy surface: Eel = Eel(R1, . . . ,RN)
(coordinates of atoms/nuclei R1, . . . ,RN)

Approximations:

Born–Oppenheimer approximation

separation of nuclei and electrons
Eel obtained for fixed positions of nuclei

Classical description of nuclei

rather than quantum mechanics
for the motion of the nuclei

Application of a force field

harmonic springs
point-charge electrostatics
. . .



Introduction

Energy with a force field
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Geometry optimization

Potential energy surface

electronic energy is a function of coordinates of nuclei {R I}

E = E (R1, . . . ,RN)

→ electronic energy defines the potential energy surface (PES)

example: a diatomic molecule
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→ all of the calculations only provide the PES point-wise



Geometry optimization

Sampling of the potential energy surface

chemically interesting :
stationary points

on the PES

minimum:
‘equilibrium’ structure,
stable conformation of a molecule

saddle point of 1st order:
transition state (TS),
point of maximum energy along the direction of a ‘reaction’



Geometry optimization

Potential energy surface

minimum: any change of structure → increase of energy

saddle point of 1st order: maximum along one coordinate,
(reaction coordinate) × minimum along any other coordinate



Geometry optimization

Characterization of stationary points

How shall we find the interesting stationary points?

Example: Minimum of energy of a diatomic molecules
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additional condition for a minimum:
d2E

dd2
≥ 0



Geometry optimization

Characterization of stationary points

How shall we find the interesting stationary points?
generally: 3N atom coordinates; E = E (R1, . . . ,RN)

Condition for stationary points:
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Condition for minimum: all eigenvalues of H are positive

Saddle point of 1st order: one eigenvalue of H is negative,
all of the others are non-negative



Geometry optimization

Geometry optimization = Energy minimization

→ search for a local minimum, starting from a suitable structure

starting structure?
– depends on the

chemical problem

convergence criterion? e.g.

|g | =

√∑

I ,α

g2
I ,α < t

how shall we determine
the new structure?

try to make as few steps as possible
(calculation of energy/gradients is expensive)

avoid any calculation of Hessian
(that is even more expensive)



Geometry optimization

Geometry optimization = Energy minimization

How to make a step towards a minimum?

Example: geometry optimization of a diatomic molecule
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Startpunkt

Gradient

follow the negative of gradient: R i+1 = R i + ∆R i = R i −αg i

how shall the step length α be determined?



Geometry optimization

Steepest descents optimization

Step along the negative of gradient

∆R i = αd i d i = −g i

Choice of the step length α?

too short → too many steps needed

too long → overshoot the minimum

‘line search’:
choose α such that the energy

in direction of gradient d i = −g i

is minimized
– calculate the energy
at several points along a line

Then, the convergence is guaranteed.
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In three dimensions (corresponding to one atom), the gradient reads10
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For N atoms, !g and !F are 3N -dimensional vectors:
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The unit vector in the direction of the gradient is given by

!e =
!g

|!g| (II.8)

A. Steepest-descent minimization (SD)

Within the method of steepest descent, the optimizer moves iteratively – in steps !h along

the direction of the force

!h = α · !e (II.9)

The critical point here is the choice of the step size α. If the step is too long, we follow the

gradient down the potential though but may miss the minimum along the gradient and go

up the valley on the opposite side. If the step is too short, we may need to perform too

many steps, which in turn means too many (costly) evaluations of energy and forces.

FIG. 11: Steepest descent minimization

One way to overcome this problem is to perform a line search along the direction !e, and

find a minimum on this line. In other words, we are looking for a value of αk such that rk+1

10 using nabla — the formal vector of partial derivatives ∇ ≡
(
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)
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FIG. 12: Line search

is the minimum along the search direction ek:

!rk+1 = !rk + αk!ek (II.10)

The interesting and important point is that two successive search directions (steps) are

orthogonal to each other:

!hk−1 · !hk = 0 (II.11)

A problem may arise if the energy function forms a narrow valley. In such a case, the second

next search direction will be similar. Therefore, an efficient strategy attempts to avoid this

double work and looks for search directions that are orthogonal to all previous ones.

FIG. 13: Problem of SD in a narrow valley

B. Conjugate gradient minimization

Consider the Taylor series of a 3N -dimensional function up to the second order:
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Geometry optimization

Conjugate gradient optimization

Problems of steepest descents

too many steps in similar
directions (in narrow valleys)

convergence is getting slower
when close to the minimum

descent path oscillates around the minimum path, as illustrated in Figure 12.2, and this
is particularly problematic for surfaces having long narrow valleys.

Furthermore, as the minimum is approached, the rate of convergence slows down.
The steepest descent will actually never reach the minimum, it will crawl towards it at
an ever decreasing speed.

An accurate line search requires several function evaluations along each search
direction. Often the minimization along the line is only carried out fairly crudely, or a
single step is simply taken along the negative gradient direction. In the latter case, the
step size is varied dynamically during the optimization; if the previous step reduced
the function value, the next step is taken with a slightly longer step size, but if the func-
tion values increased, the step size is reduced. Without an accurate line search, the
guarantee for lowering of the function value is lost, and the optimization may poten-
tially end up in an oscillatory state.

By its nature, the steepest descent method can only locate function minima. The
advantage is that the algorithm is very simple, and requires only storage of a gradient
vector. It is furthermore one of the few methods that is guaranteed to lower the func-
tion value. Its main use is to quickly relax a poor starting point, before some of the
more advanced algorithms take over, or as a “backup” algorithm if the more sophisti-
cated methods are unable to lower the function value.

12.2.2 Conjugate gradient methods

The main problem with the steepest descent method is the partial “undoing” of the
previous step. The Conjugate Gradient (CG) method tries to improve on this by per-
forming each line search not along the current gradient but along a line that is con-
structed such that it is “conjugate” to the previous search direction(s). If the surface is
purely quadratic, the conjugate direction criterion guarantees that each successive min-
imization will not generate gradient components along any of the previous directions,
and the minimum is reached after at most Nvar steps. The first step is equivalent to a
steepest descent step, but subsequent searches are performed along a line formed as
a mixture of the current negative gradient and the previous search direction.

(12.7)d g di i i i= − + −b 1
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Figure 12.2 Steepest descent minimization

Solution – conjugate gradient optimization

make the step d i orthogonal to all of the previous ones

d i = −g i + βid i−1

various schemes: Fletcher–Reeves or Polak–Riebere:

βFRi =
g t
i g i

g t
i−1g i−1

βPRi =
(g i − g i−1)tg i

g t
i−1g i−1



Geometry optimization

Newton–Raphson optimization

Taylor expansion of the PES around R i :

E (R) = E (R i ) + g i · (R − R i ) + 1
2(R − R i )

t ·H i · (R − R i ) + · · ·

minimum of this Taylor expansion up to the 2nd order:

dE

dR
= g i + H i · (R − R i ) = 0→ H i · (R − R i ) = −g i

Newton–Raphson optimization:

calculate the step toward the minimum from that expression:

∆R i = −H−1i · g i

(on a harmonic PES, this would lead to the minimum directly)

Problem: the calculation of Hessian in every step is expensive



Geometry optimization

Quasi-Newton optimization

Apply an approximated Hessian rather than the exact Hessian

start e.g. with a unit matrix (→ 1 steepest-descents step)

other starting Hessians may be better
– full calculation (just once), or from certain simple rules

in every step, use the gradients g i

to improve the approximated Hessian H̃ i ,
then invert it for ∆R i = −H−1i · g i

usually converges quickly and reliably, at the cost of
storage for Hessian of O(N2) and its inversion of O(N3)

compare: CG is O(N) but converges more slowly

a standard method in most quantum chemical / MD packages



Geometry optimization

Quasi-Newton optimization

various update algorithms are available

Broyden–Fletcher–Goldfarb–Shanno (BFGS):

H̃ i+1 = H̃ i +
∆g i ⊗∆g t

i

∆g t
i ·∆R i

− H̃ i ·∆R i ⊗∆Rt
i · H̃ i

∆g t
i · H̃ i ·∆R i

– symmetric and positive-definite
– minimizes the change in Hessian

limited-memory BFGS (L-BFGS)
– propagate the inverse Hessian (not the Hessian itself)
→ the O(N3) matrix inversion is eliminated

– do not store the Hessian or inverse Hessian in memory
– rather, reconstruct the matrix on the fly

from ∆g i & ∆R i over a few (< 10) last steps
→ the O(N2) storage requirement is eliminated



Geometry optimization

Quasi-Newton optimization

q-N converges the better, the closer PES is to a quadratic form
– depends on the choice of coordinate system strongly

Possible choices of coordinate system

cartesian coordinates
– simple, but not adjusted to a ‘chemical’ problem
→ often slow convergence

internal coordinates
– use bond lengths, angles and torsional angles
→ often good convergence
→ but the definition of 3N − 6 coordinates difficult

redundant internal coordinates
– use ‘too many’ internal coordinates
→ mostly good convergence
→ simple automatized definition is possible

more complex coordinate systems possible



Geometry optimization

Quasi-Newton optimization



Geometry optimization

Summary: geometry optimization

starting point: a chemically meaningful structure

minimization procedures:

steepest descents: converges always, but slowly
better: conjugate gradients, quasi-Newton (e.g. BFGS)

– all of these avoid the calculation of Hessian

biomolecules – often very difficult to find true minima

in the quantum chemistry

calculations mostly limited to a single minimum
starting point for the calculation of properties (spectra. . . )

with the force field methods

starting point for MD – steepest descents is often good enough
pre-optimization for quantum chemical calculations



Molecular mechanics?

Limitations of the force field approximation

The parameters have to be determined / fitted

difficult for certain / unusual elements (e.g., transition metals)

Conceptual limitations

chemical bonds cannot be broken or created

atom types are pre-determined

atomic charges are pre-determined and constant
– no change of electron density can be described

Electrons are not described explicitly, so no wave function

only ground-state energy and forces are available

no spectroscopic properties (interaction with light)

no photochemistry (excited states)



Molecular mechanics?

Quantum chemistry vs. force fields

Quantum mechanics:
electronic wave functions: Ψel = Ψel(r1, . . . , rN)

(coordinates of electrons r1, . . . , rN)
solve the electronic Schrödinger equation

Ĥ{R}Ψ{R} = Eel(R1, . . . ,RN)Ψ{R}

Quantum chemistry

wave function theory (WFT)

density functional theory (DFT)

→ calculation of energy is computationally intensive

Force field methods

evaluate Eel ‘directly’, do not look for the electronic structure

→ calculation of energy is very quick and efficient
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