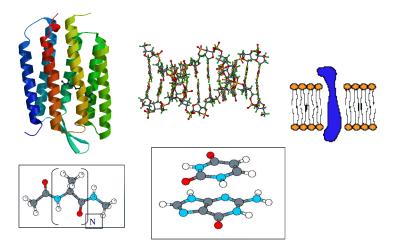
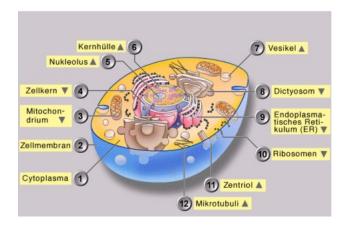
Biomolecular Modeling with Molecular Dynamics Introduction


Marcus Elstner and Tomáš Kubař

2018, April 20

Marcus Elstner and Tomáš Kubař Introduction

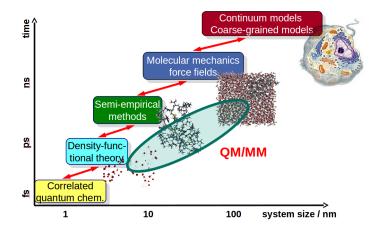

Structural elements of life

Biomolecules - proteins, nucleic acids, lipids, carbohydrates ...

Biomolecular structure

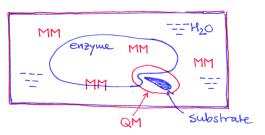
 $\label{eq:Biomolecules} Biomolecules \to biomolecular \ complexes \to aggregates \to \dots \to organelles \to a \ cell$

Biophysical processes


- Bioenergetics reception, transformation and utilization of energy
- Catalysis synthesis of substances, metabolism
- Transport exchange of small molecules, ions up to proteins with the surroundings
- Sensing detection / recognition / binding in presence of a stimulus

Theoretical / computational biophysics

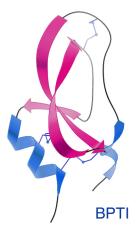
Molecular modeling


- Focus: understanding on the atomic scale
- The structure and dynamics determine the properties and function of biological molecules
- Prediction of experimentally relevant data
- Molecular design of materials with desired properties
- The way to the goal in general: solution of quantum mechanical many-body problem
- QM MB approach would be too inefficient
 → apply more approximative methods

Methods

Methods

- Quantum chemistry (QM)
 - bonds created/broken
 - computionally costly
 - DFT or ab initio, up to 100 atoms
 - semi-empirical, up to 1000 atoms
- Molecular mechanics (MM)
 - efficient for up to 100,000 atoms
 - generally structural properties
- Hybrid QM/MM
 - chemical reactions etc.

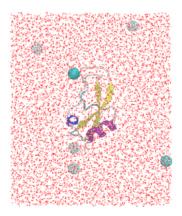


Timeline

- 1687 equations of motion (Newton)
- similar harmonic spring (Hooke)
- . . .
- 1946 molecular mechanics
- 1950s useful computers
- 1959 molecular dynamics of a fluid (Alder & Wainwright)
- 1975 molecular dynamics of a protein (Levitt & Warshel, Gelint & Karplus)
- 1976 QM/MM proposed (Levitt & Warshel)
- 1990 significant QM/MM work (Karplus)

1st simulation of protein dynamics

- BPTI, 58 AAs, in vacuo, 9.2 ps
- McCammon, Gelin & Karplus, Nature 1977
- starting point crystal structure

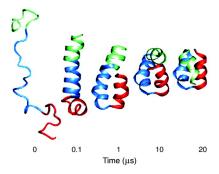


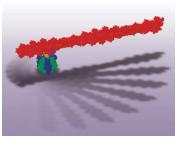
simulation of protein in aqueous solution - BPTI + water, 210 ps

- Levitt & Sharon, PNAS 1988

today's standard

- 100,000 atoms, 100 ns

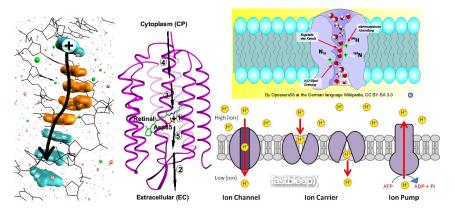

Contact with experimental reality


- X-ray and neutron diffraction
- electron cryomiscroscopy (cryo-EM)
- STM/AFM imaging
- electronic / optical spectra
- vibrational / IR spectra
- electronic and nuclear magnetic resonance
- thermodynamic measurements DSC, ITC

Applications

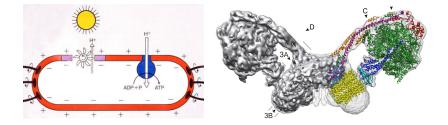
Structure and dynamics of complex biomolecular systems

- protein folding
- protein-ligand interaction
- proteins as nanomachines



Applications

Transport


- electrons
- protons across membrane
- water, ions, small molecules, ...

Applications

Enzymes

- catalyzed chemical reactions
- energy conversion (light, chem., mech., gradients)
- bioenergetics

Challenges

- system size limited to ca. 100,000 atoms
- time scales limited to few microseconds
- accuracy of description
 - bonded interaction (vibration, rotation)
 - non-bonded interaction (charge-transfer, polarizability)
- excited electronic states
- quantum character of movement of nuclei

Some can be tackled with

- further development of available methods
- combination of various methods
- optimization of algorithms parallelization, $\mathcal{O}(N)$ linear scaling

Nobel prizes for computational chemistry

The Nobel Prize in Chemistry 1998

Walter Kohn Prize share: 1/2

John A. Pople Prize share: 1/2

The Nobel Prize in Chemistry 1998 was divided equally between Walter Kohn "for his development of the density-functional theory" and John A. Pople "for his development of computational methods in quantum chemistry". Nobel prizes for computational chemistry

The Nobel Prize in Chemistry 2013

© Harvard University Martin Karplus

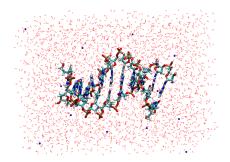

Photo: © S. Fisch Michael Levitt

Photo: Wikimedia Commons Arieh Warshel

The Nobel Prize in Chemistry 2013 was awarded jointly to Martin Karplus, Michael Levitt and Arieh Warshel *"for the development of multiscale models for complex chemical systems"*. Elementary body – atom

Usually - one molecule/complex of interest (e.g. protein, NA)

Simulation vs. reality One molecule instead of many Tiny volume of $\approx 10^{-21}$ L instead of $\approx 10^{-5}$ L Dynamics – short time scale of max. $\approx 10^{-5}$ s Each atom -x, y, z coordinates "A protein is a set of coordinates." (Gromacs, A. P. Heiner)

Peptide in	linid	water						
48609	cipiu-	rwatei						
1LYS	N	1	4.360	4.040	8.207	0.2882	0.4041	-0.5575
1LYS	ні	2	4.416	4.119	8.178	0.4151	0.4652	-0.1555
1LYS	H2	3	4.340	4.037	8.306	0.8750	-1.7473	-0.4570
1LYS	H3	4	4.407	3.954	8.185	0.3515	0.2061	0.2987
1LYS	CA	5	4.231	4.037	8.136	0.0777	0.2898	-0.1753
1LYS	HA	6	4.162	4.112	8.174	-0.6060	-0.8009	0.7924
1LYS	CB	7	4.262	4.069	7.990	-0.3012	0.3768	-0.2373
1LYS	HB1	8	4.360	4.025	7.969	0.6025	1.3517	1.6736
1LYS	HB2	9	4.300	4.171	7.998	0.1892	0.2300	-0.6695
1LYS	CG	10	4.161	4.049		-0.5841	0.0286	0.0762
1LYS	HG1	11	4.056	4.067	7.900	-0.9362		-0.5669
1LYS	HG2	12	4.148	3,942	7.863	-3.1278	0.1078	1.2506
1LYS	CD	13	4.196	4.123	7.749	0.0459	-1.0686	-0.3967
1LYS	HD1	14	4.298	4.095	7.721	-0.3753	-3,6647	0.4016
1LYS	HD2	15	4.205	4,228	7.778	3,4358	-1.4671	0.3786
1LYS	CE	16	4.088	4.101	7.644	-0.3622	0.1377	-0.2469
1LYS	HE1	17	3,992	4.138	7.679	-1.1725	-0.1480	-2.0367
1LYS	HE2	18	4.073	3,994	7.628	-3.0282	0.2507	0.9872
1LYS	NZ	19	4.124	4.174	7.521	-0.0992	0.0204	-0.2407
1LYS	HZ1	20	4.056	4.156	7.449	-2.5018	1.3804	1.5513
1LYS	HZ2	21	4.118	4.275	7.528	-1.2171	-0.0196	-0.4614

Why should we want to simulate molecular systems?

Experiment – the molecule has its genuine properties Simulation – we need a model to describe the interactions of atoms – the quality of the model is decisive

Advantage of simulation – structure on atomic level defined

$\mathsf{Structure} \to \mathsf{function}$

Combination of experiment and simulation - added value

Typical hardware

Marcus Elstner and Tomáš Kubař

Introduction

Cutting-edge hardware

Dror RO, et al. 2012. Annu. Rev. Biophys. 41:429–52