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Thermodynamic properties

time averages of thermodynamic quantites
– correspond to ensemble averages (ergodic theorem)

some quantities – evaluated directly

U = 〈E 〉t

fluctuations – may determine interesting properties:
isochoric heat capacity:

CV =

(
∂U

∂T

)
V

=
σ2E

kBT 2
=

〈
E 2
〉
− 〈E 〉2

kBT 2

– elegant way from a single simulation to heat capacity
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General note on averaging

simulated 2 MD trajectories → two sets of 1000 values of A each
perform averaging of A separately → µ1 ± σ1 and µ2 ± σ2

how to average over the whole ensemble over 2000 values?

µ = 1
2(µ1 + µ2)

what about the std. deviation σ?

hint: make use of σ2 =
〈
A2
〉
− 〈A〉2

solution: for each set, perform averaging of A as well as A2,
then it is safe to average the averages〈

A2
〉

= 1
2

(〈
A2
〉
1

+
〈
A2
〉
2

)
which leads to σ
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Structural data

Single molecule in solvent

concentrating on the dissolved molecule
– protein, DNA,. . .

average structure
– arithmetic mean of coordinates
from snapshots along MD trajectory

~ri =
1

N

N∑
n=0

~r
(n)
i

– clear, simple, often reasonable
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Structural data

Average structure

Possible problems:

rotation of the entire molecule – no big issue
– RMSD fitting of every snapshot to the starting structure

what is RMSD? see on the next slide. . .

freely rotatable single bonds – CH3

– all 3 hydrogens collapse to a single point
– no problem – ignore hydrogens

molecule does not oscillate around a single structure
– several available minima of free energy
– possibly averaging over multiple sections of trajectory
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Structural data

Dynamic information

root mean square deviation (RMSD)
of structure in time t
from a suitable reference structure ~r ref

RMSD(t) =

√√√√ 1

N

N∑
i=1

∣∣~ri (t)− ~r refi

∣∣2
follows the development of structure in time

reference structure – starting or average geometry

also possible – comparison with another geometry of interest
DNA: A- and B-like; proteins: α-helix and extended β

RMSD fitting – finding such a translation + rotation
that minimizes the RMSD from the reference structure
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Structural data

Root mean square deviation

RMSD of non-hydrogen atoms of a DNA oligonucleotide
from given geometries
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Structural data

Root mean square deviation

RMSD of non-hydrogen atoms of a DNA oligonucleotide
from given geometries
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Structural data

Root mean square deviation

B-DNA average structure A-DNA
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Structural data

Magnitude of structural fluctuation

root mean square fluctuation (RMSF)
of position of every single atom
averaged along MD trajectory

RMSFi =

√〈
|~ri − 〈~ri 〉|2

〉
– may be converted to B-factor

Bi =
8

3
π2 · RMSF2

i

– observable in diffraction experiments (X-ray. . . )
– contained in structure files deposited in the PDB
– comparison of simulation with X-ray may be difficult
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Structural data

Root mean square fluctuation

RMSF of atomic positions in DNA oligonucleotide
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Structural data

Root mean square fluctuation

RMSF of atomic positions in DNA oligonucleotide

(blue < green < yellow < red)
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Structural data

Structure of double-helical nucleic acids

PDB ID 1EHZ
phenylalanine tRNA from S. cerevisiæ

downloaded from http://x3dna.org
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Structural data

Structure of double-helical nucleic acids

Helical parameters
bases within a pair
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Structural data

Structure of double-helical nucleic acids

Helical parameters
pair in a helix two pairs relative
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Structural data

Structure of peptides and proteins

Ramachandran plot
– 2D histogram of dihedrals φ and ψ along the backbone
– different regions correspond to various second. structures
– may be generated easily in simulation software packages
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Structural data

Structure of peptides and proteins

Ramachandran plot
– 2D histogram of dihedrals φ and ψ along the backbone
– different regions correspond to various second. structures
– may be generated easily in simulation software packages

color codes Gibbs free energy in kcal/mol
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Structural data

Structure of peptides and proteins

Distance matrix
– distances of amino-acid residues,

represented e.g. by centers of mass or by Cα atoms
– either time-dependent or averaged over trajectory
– bioinformatics

distance matrix between two chains (horiz. and vertical axes)
shows contacts between secondary structure elements

PDB ID 1XI4, clathrin cage lattice, April 2007 Molecule of the Month

http://www2.warwick.ac.uk/fac/sci/moac/people/students/peter cock/python/protein contact map
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Structural data

Structure of fluids

example – pure argon or water – different situation
– many molecules, which are all equally important

radial distribution functions

describe how the molecular density varies
as a function of the distance from one particular molecule

spherical shell of thickness δr at a distance r : δV ≈ 4πr2 · δr
count the number of molecules in this shell: n

divide by δV to obtain a ‘local density’ at distance r
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Structural data

Structure of fluids

example – pure argon or water – different situation
– many molecules, which are all equally important

radial distribution functions

pair distribution function

g(r) =
n/δV

ρ
=

n

4πr2 · δr
· 1

ρ

– probability to find a molecule in distance r from ref. mol.
– division by the macroscopic density – normalization
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Structural data

Pair distribution function

Lennard-Jones fluid near the triple point and hard-sphere fluid

reprinted from Nezbeda, Kolafa and Kotrla 1998
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Structural data

Pair distribution function

g(r) vanishes on short distances – molecules cannot intersect

high peak – van der Walls radius, closest-contact distance
(even though hard spheres do not have any attraction!)

– much more likely to find this distance in LJ or HS than in IG

longer distances – a few shallow minima and maxima,
converges to unity – uniform probability as in IG

Fourier transform of g(r) – structure factor S
– quantifies the scattering of incoming radiation in the material
– measured in diffraction experiments (X-ray, neutron)

S(~q) =
1

N

〈∑
j

∑
k

exp [−i · ~q · (~rj − ~rk)]

〉
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Structural data

Pair distribution function

g(r) and S(q) of water (Soper, Chemical Physics 2000)
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Structural data

Pair distribution function

g(r) and S(q) of ice Ih at 220 K and 1 bar (Soper, Chemical Physics 2000)
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Structural data

Pair distribution function

Importance – not only information about the structure
calculation of thermodynamic properties possible
using potential energy u(r) and force f (r) of a molecule pair

corrections to the IG values of total energy and pressure (EOS!):

E − 3

2
NkBT = 2πNρ

∫ ∞
0

r2 · u(r) · g(r) dr

P − ρ kBT = −2π

3
ρ2
∫ ∞
0

r3 · f (r) · g(r) dr

(as long as pairwise additivity of forces can be assumed)
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Monitoring the equilibration

Equilibration

‘preliminary’ simulation to reach the termodynamic equilibrium

goal – stable thermodynamics properties (no drift)

usually – Epot, T , p, in NPT also ρ
– evaluated by program readily and written to output

structure – has to be taken care of, too

start – often artificially regular (crystal-like) structure,
which should be washed out during equilibration
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Monitoring the equilibration

Structural parameters

translational order – Verlet’s order parameter

λ =
λx + λy + λz

3
, λx =

1

N

N∑
i=1

cos

[
4πxi
a

]
etc.

a – edge of the unit cell
ideal crystal: λ = 1
disordered structure: λ fluctuates around 0

mean squared displacement from initial position

MSD =
1

N

N∑
i=1

|~ri (t)− ~ri (0)|2

should increase gradually in fluid with no specific structure
would oscillate about a mean value in a solid
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Monitoring the equilibration

Structural parameters

equilibration of liquid argon followed by λ and MSD

Reprinted from Leach: Molecular Modelling
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Time-dependent properties

Correlation functions

two physical quantities x and y may exhibit correlation

indicates a relation of x and y , opposed to independence

quantification – several kinds of correlation functions

Pearson correlation coefficients
– describe linear relationship between x and y
– quantities fluctuate around mean values 〈x〉 and 〈y〉
– consider only the fluctuating part, i.e. x −〈x〉 and y −〈y〉
– introduce correlation coefficient ρxy

ρxy =
〈(x − 〈x〉) · (y − 〈y〉)〉√
〈(x − 〈x〉)2〉 · 〈(y − 〈y〉)2〉

=
cov(x , y)

σx · σy

cov(x , y): covariance of x and y
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Time-dependent properties

Correlation functions

(not necessarily linear) correlation of two quantities
and the coresponding correlation coefficients

Downloaded from Wikipedia
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Time-dependent properties

Correlation functions

MD – values of a quantity x as a function of time

at some point in time, the value of x may be correlated
with the value of x at an earlier time point

described by autocorrelation function (ACF)

cx(t) =
〈x(t) · x(0)〉
〈x(0) · x(0)〉

=

∫
x(t ′) x(t ′ + t) dt ′∫

x2(t ′) dt ′

correlation of the same property x
at two time points separated by t,
normalized to takes values between −1 and 1
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Time-dependent properties

Autocorrelation of velocity

autocorrelation function – quantifies ‘memory’ of the system,
or how quickly the system ‘forgets’ its previous state

velocity autocorrelation function

tells how closely the velocities of atoms
at time t resemble those at time 0

usually averaged over all atoms i in the simulation

cv (t) =
1

N

N∑
i=1

〈~vi (t) · ~vi (0)〉
〈~vi (0) · ~vi (0)〉

typical ACF starts at 1 in t = 0 and decreases afterwards
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Time-dependent properties

Autocorrelation of velocity

ACF of velocity in simulations of liquid argon (densities in g·cm−3)

Reprinted from Leach: Molecular Modelling

lower ρ – gradual decay to 0

higher ρ – ACF comes faster to 0
– even becomes negative briefly
– ‘cage’ structure of the liquid
– one of the most interesting

achievements
of early simulations
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Time-dependent properties

Autocorrelation of velocity

time needed to lose the autocorrelation whatsoever
– correlation time or relaxation time:

τv =

∫ ∞
0

cv (t) dt

may help to resolve certain statistical issues:
when averaging over time the properties of system,

it is necessary to take uncorrelated values
if the property is dynamical (related to v),

we can take values of the property separated by τv
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Time-dependent properties

Autocorrelation of velocity

connection between velocity ACF and transport properties

Green–Kubo relation for self-diffusion coefficient D:

D =
1

3

∫ ∞
0
〈~vi (t) · ~vi (0)〉i dt

interesting observable quantities

important to be able to calculate them from MD

there is yet another way from simulation to D
– Einstein relation for D using the MSD

D =
1

6
lim
t→∞

〈
|~ri (t)− ~ri (0)|2

〉
i

t

NB: Fick’s laws of diffusion J = −D ∂φ
∂x , ∂φ

∂t = D ∂2φ
∂x2
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Time-dependent properties

Autocorrelation of dipole moment

velocity – property of a single atom
other quantities – need to be evaluated for whole system

total dipole moment:

~µtot(t) =
N∑
i=1

~µi (t)

ACF of total dipole moment:

cµ(t) =
〈~µtot(t) · ~µtot(0)〉
〈~µtot(0) · ~µtot(0)〉

– related to the vibrational spectrum of the sample
– IR spectrum may be obtained as Fourier transform of cµ(t)
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Time-dependent properties

Autocorrelation of dipole moment

IR spectra for liquid water from simulations

thick – classical MD,
thin – quantum correction,
black dots – experiment
B. Guillot, J. Phys. Chem. 1991

no sharp peaks at well-defined
frequencies (as in gas phase)

rather – continuous bands –
liquid absorbs frequencies
in a broad interval

frequencies – equivalent to
the rate of change
of total dipole moment
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Time-dependent properties

Principal component analysis

covariance analysis on the atomic coordinates along MD trajectory
= principal component analysis (PCA), or essential dynamics

3N-dim. covariance matrix C of atomic coordinates ri ∈ {xi , yi , zi}
Cij = 〈(ri − 〈ri 〉) · (rj − 〈rj〉)〉t or

Cij =
〈√

mi (ri − 〈ri 〉) ·
√
mj(rj − 〈rj〉)

〉
t

(mass-weighted)

diagonalization →
eigenvalues – may be expressed as quasi-harmonic frequencies
eigenvectors – principal or essential modes of motion

– analogy of normal modes of vibration
– first few – largest eigenvalues, lowest frequencies

– global, collective motions, many atoms involved
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Time-dependent properties

Principal component analysis

example – double-stranded DNA – lowest frequencies

10 ns simulation of a double-helical DNA 11-mer, 691 atoms, of which 445 non-hydrogen → 1329 vib. modes
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Time-dependent properties

Principal component analysis

DNA octamer, eigenvector 1
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Time-dependent properties

Principal component analysis

DNA octamer, eigenvector 2
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Time-dependent properties

Principal component analysis

DNA octamer, eigenvector 3
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Time-dependent properties

Principal component analysis

DNA – the modes are the same as expected for a flexible rod
– 2 bending modes around axes perpendicular

to the principal axis of the DNA, and a twisting mode

PCA – gives an idea of what the modes of motion look like
– additionally – basis for thermodynamic calculations

– vibrational frequencies may lead to configurational entropy
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Appendix

Fourier transform

FT describes which frequencies are present in a function (of time)
– decomposes f (t) into a ‘sum’ of periodic oscillatory functions

F (ω) =

∫ ∞
−∞

f (t) · exp [−iωt] dt

note that exp [−iωt] = cos [ωt]− i sin [ωt]
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