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Non-bonded interactions

Non-bonded interactions – why care?

key to understand biomolecular structure and function
– binding of a ligand
– efficiency of a reaction
– color of a chromophore

two-body potentials → computational effort of O(N2)
– good target of optimization

solvent (H2O) – crucial role, huge amount
– efficient description needed



Non-bonded interactions

How many pair-wise interactions are there?

imagine we introduce an additional atom into a system
that already has N − 1 atoms

bonded interactions

we add at most (roughly)
2 bonds, 2 angles, 3 dihedrals

for N atoms, this is at most 7N
– proportional to N: O(N)



Non-bonded interactions

How many pair-wise interactions are there?

imagine we introduce an additional atom into a system
that already has N − 1 atoms

non-bonded interactions

between the new atom
and each of the previous atoms:
N − 1 interactions!

for N atoms, this is N(N − 1)/2
– proportional to N2: O(N2)



Non-bonded interactions

How many pair-wise interactions are there?

Let us assume: the calculation of every atom–atom interaction
takes the same amount of time

Then, the O(N2) evaluation of non-bonded interactions
will be the most computationally intensive procedure
in the entire simulation (the bottle neck)



Non-bonded interactions

Intro to electrostatic interaction

Coulomb’s law

elstat. interaction energy of point charges q and Q on distance r :

E el =
1

4πε0
· q · Q

r

electrostatic potential (ESP) induced at ~r by Q at ~r1:

φ(~r) =
1

4πε0
· Q

|~r − ~r1|

ESP induced by a number of point charges Qi :

Φ(~r) =
1

4πε0

∑
i

Qi

|~r − ~ri |

if we know ESP at ~r , and q is placed there, elstat. energy follows as

E el(~r) = Φ(~r) · q

→ ‘electrostatic potential energy surface’



Non-bonded interactions

Intro to electrostatic interaction

Coulomb’s law

continuous charge distribution – charge density ρ = ∂Q/∂V

charge in a volume element Vi : Qi = ρ(~ri ) · Vi = ρ(~ri ) ·∆V

summing the potential induced by all elements gives

Φ(~r) =
1

4πε0

∑
i

ρ(~ri ) ·∆V

|~r − ~ri |

for infinitesimal volume elements (with d3~r = dV ):

Φ(~r) =
1

4πε0

∫
ρ(~r1)

|~r − ~r1|
d3~r1

elstat. energy of a charge density ρ(~r) follows as

E =
1

2

∫
Φ(~r) · ρ(~r) dV =

1

8πε0

∫∫
ρ(~r1) · ρ(~r)

|~r − ~r1|
d3~r d3~r1



Non-bonded interactions

Intro to electrostatic interaction

Poisson’s equation

– needs to be solved to get ESP from charge distribution
(differential equation for Φ as a function of ~r):

∇2Φ(~r) = −ρ(~r)

ε

– if permittivity ε is not constant:

∇ (ε∇Φ(~r)) = −ρ(~r)

example: ESP of Gaussian charge density around ~o with width σ:

ρ(r) = Q · 1

σ3
√

2π
3
· exp

[
r2

2σ2

]
solution of Poisson’s equation:

Φ(r) =
1

4πε
· Q
r
· erf

[
r√
2σ

]



Non-bonded interactions

Intro to electrostatic interaction

Poisson’s equation

solution for Gaussian charge density:

Φ(r) =
1

4πε
· Q
r
· erf

[
r√
2σ

]



Non-bonded interactions

Intro to electrostatic interaction

Poisson’s equation

solution for Gaussian charge density:

Φ(r) =
1

4πε
· Q
r
· erf

[
r√
2σ

]
if we move far from the center of charge density (r is large)

erf converges to 1, ESP equals that
of a point charge placed in ~o

accordance with experience – a point charge
and a well-localized charge density
interact with distant charges in the same way

actually, we need not go far to see that
– erf = 0.999 already for x = 2.4σ



Non-bonded interactions

Periodic boundary conditions

Biomolecule in solution

typical MD simulations – molecular system in aqueous solution
task – make the system as small as possible (reduce cost)
straightforward solution – single molecule of solute (protein, DNA)

with a smallest possible number of H2O molecules
typical – several thousand H2O molecules in a cube n × n × n nm

issue – everything is close to the surface,
while we are interested in a molecule in bulk solvent

so – we may be simulating something else than what we want



Non-bonded interactions

Periodic boundary conditions

Periodic boundary conditions

elegant way to avoid these problems

molecular system placed in a regular-shaped box

the box is virtually replicated in all spatial directions



Non-bonded interactions

Periodic boundary conditions

Periodic boundary conditions

elegant way to avoid these problems

molecular system placed in a regular-shaped box

the box is virtually replicated in all spatial directions

positions (and velocities) of all particles
are identical in all replicas,
so we can keep only one copy in the memory

this way, the system is infinite – no surface!

the atoms near the wall of the simulation cell interact
with the atoms in the neighboring replica



Non-bonded interactions

Periodic boundary conditions

PBC – example

isaacs.sourceforge.net



Non-bonded interactions

Periodic boundary conditions

PBC – features

small problem – artificial periodicity in the system (entropy /)
– still much better than boundary with vacuum

only coordinates of the unit cell are recorded

atom that leaves the box enters it on the other side.

carefull accounting of the interactions of atoms necessary!
simplest – minimum image convention:

an atom interacts with the nearest copy of every other
– interaction with two different images of another atom,

or even with another image of itself is avoided



Non-bonded interactions

Periodic boundary conditions

PBC – box shape

may be simple – cubic or orthorhombic, parallelepiped
(specially, rhombohedron), or hexagonal prism



Non-bonded interactions

Periodic boundary conditions

PBC – box shape

. . . but also more complicated
– truncated octahedral or rhombic dodecahedral
– quite complex equations for interactions & eqns of motion

advantage for simulation of spherical objects (globular proteins)
– no corners far from the molecule filled with unnecessary H2O



Non-bonded interactions

Periodic boundary conditions

PBC – box shape

2D objects – phase interfaces, membrane systems
– usually treated in a slab geometry



Non-bonded interactions

Accelerating non-bonded interactions

Cut-off – simple idea

non-bonded terms – bottleneck of the calculation
with PBC – infinite number of interaction pairs in principle,

still too many interaction with min. image convention
but the interaction gets weaker with distance

simplest and crudest approach to limit the number of calculations:
neglect interaction of atoms further apart than rc – cut-off

very good for rapidly decaying LJ interaction (1/r6) (rc = 10 Å)
not so good for slowly decaying electrostatics (1/r)

– sudden jump (discontinuity) of potential energy,
disaster for forces at the cut-off distance



Non-bonded interactions

Accelerating non-bonded interactions

Cut-off – better: shift

shift the whole function by V (rc) – eliminate the jump at rc :

V sh(r) =

{
V (r)− V (rc), for r ≤ rc ,

0, otherwise.

still, the gradients (forces) are at rc discontinuous!

shift-force potential gets rid of that (V ′ ≡ dV /dr):

V sf(r) =

{
V (r)− V (rc)− V ′(rc) · (r − rc), for r ≤ rc ,

0, otherwise.

drawback – the Coulomb energy is not quite Coulomb anymore



Non-bonded interactions

Accelerating non-bonded interactions

Cut-off – better: reaction field

reaction field interaction:
assume a constant dielectric environment beyond the cut-off rc ,

with a dielectric constant εrf (parameter):

V rf(r) =
1

r
·
(

1 +
εrf − 1

2εrf + 1
· r

3

r3
c

)
− V rf(rc)

F rf(r) = − 1

r2
·
(

1− 2εrf − 2

2εrf + 1
· r

3

r3
c

)
(the force at cut-off is very small, and vanishes with εrf)

there is a physical motivation – possible advantage



Non-bonded interactions

Accelerating non-bonded interactions

Cut-off – better: switch

switch off the Coulomb interaction from full strength to zero,
starting from a certain distance r1,
by multiplication with a function passing from 1 to 0

V sw(r) =


V (r) for r < r1,

V (r) · ϕ
(

r−r1
rc−r1

)
for r1 < r < rc ,

0, otherwise.

– interaction altered in the cut-off region

switch-force: F fsw(r) = F (r) · ϕ
(

r−r1
rc−r1

)
for r1 < r < rc ,

if needed, obtain energy formally as V fsw(r) =
∫ r
∞ F fsw(r ′)



Non-bonded interactions

Accelerating non-bonded interactions

Note: switching function

a general concept to approximation
avoiding abrupt change of a value of the function

fsw(x) = f (x) · ϕ
(

x − x1

x0 − x1

)
switching function ϕ(x)

defined on interval (0, 1)

goes from 1 to 0

need continuous derivative?
– cubic function

need cont. 2nd derivative?
– 5th-order polynom



Non-bonded interactions

Accelerating non-bonded interactions

Cut-off – better alternatives

elstat. interaction energy of two unit positive charges

shift / switch – applied here to energy, better apply them to force



Non-bonded interactions

Accelerating non-bonded interactions

Cut-off – better alternatives



Non-bonded interactions

Accelerating non-bonded interactions

Neighbor lists

cut-off – we still have to calculate the distance for every two atoms
(to compare it with the cut-off distance)
→ we do not win much yet – there are still O(N2) distances

observation: pick an atom A.
the atoms that are within cut-off distance rc around A,
remain within rc for several consecutive steps of dynamics,
while no other atoms approach A that close

idea: maybe it is only necessary to calculate the interactions
between A and these close atoms – neighbors



Non-bonded interactions

Accelerating non-bonded interactions

Neighbor lists



Non-bonded interactions

Accelerating non-bonded interactions

Neighbor lists

what will we do?
calculate the distances for every pair of atoms
less frequently, i.e. every 10 or 20 steps of dynamics, and
record the atoms within cut-off distance in a neighbor list

then – calculate the interaction for each atom
only with for the atoms in the neighbor list – formally O(N)

note – the build of the neighbor list itself is O(N2),
which can be reduced with further tricks (‘cell lists’)



Non-bonded interactions

Complete treatment of non-bonded interactions

Accounting of all of the replicas

cut-off – often bad approximation, e.g. with highly charged
molecular systems (DNA, some proteins)

artificial forces with switching function
→ e.g. artificial accumulation of ions around cut-off

only way – abandon the minimum image convention and cut-off
– sum up the long-range Coulomb interaction

between all the replicas of the simulation cell

introduce ~n running over all the replicas

for |~n| = 0, we have ~n = (0, 0, 0) – the central unit cell.

for |~n| = L: ~n = (0, 0,±L), ~n = (0,±L, 0), ~n = (±L, 0, 0)
– the six neighboring unit cells.

continue with |~n| =
√

2L: 12 cells touching with edge. . .



Non-bonded interactions

Complete treatment of non-bonded interactions

Can we sum it up simply?

sum of Coulomb interactions over all replicas:

ECoul =
1

2

∑
i ,j

∑
replicas ~n

qi · qj
|~rij + ~n|

i and j run over all atoms in the unit cell (rij – their distance)

infinite sum with special convergence problems
alternating harmonic series

∑
n(−1)n/n – conditionally convergent:

it converges
∑∞

i=1 ai <∞, but
does not converge absolutely:

∑∞
i=1 |ai | =∞

– convergence is slow and dependent on the order of summation



Non-bonded interactions

Complete treatment of non-bonded interactions

BTW: conditionally convergent series

I : S = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ . . .

II :
1

2
S = +

1

2
− 1

4
+

1

6
− 1

8
+ . . .

I + II :
3

2
S = 1 +

1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+ . . .

= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . = S (sic!)



Non-bonded interactions

Complete treatment of non-bonded interactions

Sum it up not so simply – Ewald

any smart way to calculate ESP induced by all images of all atoms?

Φ(~ri ) =
∑
j

∑
replicas |~n|

qj
|~rij + ~n|

to get the Coulomb energy of charges qi in the unit cell

ECoul =
1

2

∑
i

qi · Φ(~ri )

idea: pass to a sum of two series that will converge rapidly:∑ 1

r
=
∑ f (r)

r
+
∑ 1− f (r)

r

may seem awkward, but will work well ,



Non-bonded interactions

Complete treatment of non-bonded interactions

Sum it up not so simply – Ewald

summing over point charges – difficult (convergence problem)
Ewald method uses Gaussian densities of the same magnitude:

qj → qj ·
(
α√
π

)3

exp
[
−α2 · |~rj |2

]
get ESP – with Poisson’s equation

for 1 Gaussian – ESP has a form of error function

error function: defined as definite integral of a Gaussian

erf[x ] =
2√
π

∫ x

0
exp[−t2] dt

and the complementary error function as

erfc[x ] = 1− erf[x ]



Non-bonded interactions

Complete treatment of non-bonded interactions

Sum it up not so simply – Ewald

ESP for a Gaussian charge density:

Φ(~r) = qj ·
erf [α · r ]

r

and, in the special case of ‘self-interaction’ ~r = ~o:

Φ(~o) = qj ·
2α√
π

with Ewald: summing ESP induced by all charges, we obtain

Φ(~ri ) =
∑
j

∑
replicas |~n|

qj ·
erf [α · |~rij + ~n|]
|~rij + ~n|

do not forget: we have to compare this with the full ESP
induced by point charges; the difference – erfc[]



Non-bonded interactions

Complete treatment of non-bonded interactions

Sum it up not so simply – Ewald

the full ESP induced by all replicas of all charges:

Φ(~ri ) =
∑
j

∑
replicas |~n|

qj ·
erfc [α · |~rij + ~n|]
|~rij + ~n|

+
∑
j

∑
replicas |~n|

qj ·
erf [α · |~rij + ~n|]
|~rij + ~n|

= Φreal(~ri ) + Φrec(~ri )

Φreal(~ri ) – real-space contribution
– from a certain, quite small distance (depending on α):

point charges and the charge densities cancel each other
– this contribution vanishes and we can use cut-off here



Non-bonded interactions

Complete treatment of non-bonded interactions

Ewald – two contributions

real-space contribution to the Ewald sum
– original point charges (red) and Gaussian charge densities (blue)

of the same magnitude but opposite sign

– a distant Gaussian ‘looks much like’ a point charge,
and the difference of ESP goes to zero – cut-off is justified



Non-bonded interactions

Complete treatment of non-bonded interactions

Ewald – 2nd contribution

reciprocal-space contribution:
the total charge density is periodic → it may be meaningful
to Fourier-transform the calculation to the reciprocal space

(density)
Fourier transform //

solve (hard)
��

(transformed density)

solve (easy)
��

(potential) (transformed potential)
inverse Fourier transformoo

f̂ (ξ) =

∫ ∞
−∞

f (x) · exp[−2πi · x · ξ] dx

Re f̂ (ξ) =

∫ ∞
−∞

f (x) · cos[x · ξ] dx

Im f̂ (ξ) =

∫ ∞
−∞

f (x) · sin[x · ξ] dx



Non-bonded interactions

Complete treatment of non-bonded interactions

Ewald – 2nd contribution

Φrec(~ri ) – reciprocal-space contribution

– with ‘reciprocal’ vector ~k =
(
kx · 2π

Lx
, ky · 2π

Ly
, kz · 2π

Lz

)
, ki ∈ Z

– best evaluated in the form

Φrec(~ri ) =
4π

V
·
∑
~k 6=~o

1

~k2
· exp

[
−|
~k |2

4α2

]
·
∑
j

qj · exp[−i · ~k · ~rij ]

– terms decrease with increasing |~k | quickly – cut-off possible
– converges fast with large Gaussian width α
– the value of α is a compromise between

the requirements of real- and reciprocal-space calculations

both contributions – favorable convergence behavior → we can
evaluate electrostatic interactions with atoms in all periodic images



Non-bonded interactions

Complete treatment of non-bonded interactions

Ewald – the last contribution

broadened charge density interacts with itself
and this energy must be subtracted from the final result

Coulomb self-energy of a broadened Gaussian:

E self =
∑
j

qj · Φ(~o) =
∑
j

qj · qj ·
α√
π



Non-bonded interactions

Complete treatment of non-bonded interactions

Ewald – complete expression for energy

3 contributions:

‘real-space’

E real =
1

2

∑
j

qj · Φreal(~rj)

‘reciprocal-space’

E rec =
1

2

∑
j

qj · Φrec(~rj)

‘self-energy’

EEwald = E real + E rec − E self



Non-bonded interactions

Complete treatment of non-bonded interactions

Ewald – optional additional contribution

Surface / dipole term

for systems with zero charge and dipole moment ~µtot 6= ~o

Φsur(~ri ) =
4π

3

~ri · ~µtot

V

this describes the situation with surrounding vacuum

universal application may lead to problems
when mobile ions cross the box boundaries
(abrupt changes of ~µtot)

if this term is not present
– ‘tin-foil’ boundary conditions – surrounding ε =∞



Non-bonded interactions

Complete AND efficient treatment of electrostatics

Thinking about Ewald

Ewald summation – correct Coulomb interaction energy
at higher computational cost (compared to cut-off):

scales with the number of atoms as O(N2)

with a better algorithm – O(N
3
2 )

not efficient enough for large-scale simulations

goal – improved efficiency of the long-range sum
(reciprocal-space contribution)

particle–mesh Ewald method (1993)
– combines ideas from crystallography (Ewald method)

and plasma physics (particle–mesh method)
– key to success – 3D fast Fourier transform technique



Non-bonded interactions

Complete AND efficient treatment of electrostatics

Long–range energy with PME

PME works with a regular grid constructed in the simulation box

step 1
convert the point charges to Gaussian charge densities and

spread on the grid in the form of splines
practically, we need to have charges discretized on the grid points
if an atom is close to the edge of the box, a part of its charge

must be put to the opposite side of the box (PBC)



Non-bonded interactions

Complete AND efficient treatment of electrostatics

Long–range energy with PME

step 2
Fourier transform the charge density on the grid

– discrete 3D fast Fourier transform technique
solve Poisson’s eqn in the reciprocal space
→ energy and Fourier transform of potential

E rec =
1

2

K1−1∑
k1=0

K2−1∑
k2=0

K3−1∑
k3=0

Q(k1, k2, k3) · (Θrec ? Q)(k1, k2, k3)

3D-FFT used to calculate the convolution Θrec ? Q
– this corresponds to the ESP in reciprocal space

Θrec depends on box size and character of splines



Non-bonded interactions

Complete AND efficient treatment of electrostatics

Long–range energy with PME

step 3
get the potential in real space (inverse Fourier transform),
interpolate its derivative to calculate the forces

– expressed in terms of splines – analytical calculation

step 4
get E real and E self – directly from the presented expressions

step 5
attention – the reciprocal energy/forces include contributions from
atom pairs that are connected with bonds
– these have to be subtracted afterwards (excluded)

E rec
excl = −

list∑
i ,j

1

4πε0

qi · qj
rij

erf [α · rij ]



Non-bonded interactions

Complete AND efficient treatment of electrostatics

Long–range energy with PME

PME parameters: spacing of grid ca. 1 Å,
α−1 ≈ 2.5 Å → short-range cutoff ≤ 10 Å possible

neighbor lists used for the real-space interactions
→ linear scaling of real-space calculation (O(N))

complexity of the long-range PME component:
O(N · logN) due to the efficiency of FFT
modern implementations – nearly as efficient as cut-off!



Non-bonded interactions

Explicit water models

Water in biomolecular simulations

most simulations – something in aqueous solutions
H2O – usually (many) thousands molecules
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Explicit water models

Water in biomolecular simulations

most simulations – something in aqueous solutions
H2O – usually (many) thousands molecules

example – simulation of DNA decanucleotide:

PBC box 3.9× 4.1× 5.6 nm (smallest meaningful)

630 atoms in DNA, 8346 atoms in water and 18 Na+

concentration of DNA: 18 mmol/L – very high!

of all pair interactions: 86 % are water–water,
most of the others involve water
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Explicit water models

Water models

most interactions involve H2O
→ necessary to pay attention to its description

model of water must be simple enough (computational cost)
and accurate enough, at the same time

water models – usually rigid
– bond lengths and angles do not vary – constraints

molecule with three sites (atoms in this case), or up to six sites
– three atoms and virtual sites corresponding

to a ‘center’ of electron density or lone electron pairs



Non-bonded interactions

Explicit water models

Water models

TIP3P (very similar is SPC)

most frequently used

3 atoms with 3 rigid bonds, charge on every atom
(−0.834/+0.417)

only the O possesses non-zero LJ parameters (optimization)

TIP4P

negative charge placed on virtual site M rather than on the O

electric field around the molecule described better

TIP5P

2 virtual sites L with negative charges near the O – lone pairs

better description of directionality of H-bonding etc.
(radial distribution function, temperature of highest density)



Non-bonded interactions

Explicit water models

Water models



Non-bonded interactions

Continuum solvation methods

Continuum electrostatics methods

Situation up to now

molecules in an explicit solvent

all interactions between atoms involved

polarizability / permittivity of the solvent
– present in the simulation as a consequence

of interactions and dynamics

for instance, solvation free energy is involved “by the way”
– if desired, may be evaluated with special methods



Non-bonded interactions

Continuum solvation methods

Continuum electrostatics methods

Example – polypeptide in the α-helix and β-sheet conformations.

The free energy difference of the two structures is given by

the difference of internal energies / enthalpies

the entropic contributions – above all vibrational entropy

the difference of free energies of solvation

α-helix: much larger dipole moment than β-sheet
→ α-helix is better solvated in a polar medium (H2O)
→ crucial effect of solvation on the equilibrium

between conformations of solvated peptide

Motivation: the amount of solvent becomes excessive easily,
so it may be meaningful to abandon explicit solvent representation,
and apply an implicit model instead



Non-bonded interactions

Continuum solvation methods

Continuum electrostatics methods

Solvation free energy: ∆Gsolv = ∆Gcav + ∆GvdW + ∆Gele
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Continuum solvation methods

Continuum electrostatics methods

Solvation free energy: ∆Gsolv = ∆Gcav + ∆GvdW + ∆Gele

A cavity in the solvent is formed
– rearrangement of the solvent molecules

∆Gcav: decrease of S and loss of solvent–solvent interactions



Non-bonded interactions

Continuum solvation methods

Continuum electrostatics methods

Solvation free energy: ∆Gsolv = ∆Gcav + ∆GvdW + ∆Gele

A cavity in the solvent is formed
– rearrangement of the solvent molecules

∆Gcav: decrease of S and loss of solvent–solvent interactions

solute–solvent interaction – van der Waals and electrostatic
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Continuum solvation methods

Solvent-accessible surface area

SASA – important concept

solvent-exposed surface of molecule as a solid body

reasonable approx.: ∆Gcav and ∆GvdW proportional to SASA.

total surface composed from surfaces of individual atoms Si

then: ∆Gcav + ∆GvdW =
∑

i ci · Si
alternative: obtain SASA by rolling a ball of a certain diameter
(typically 2.8 Å to mimic H2O) on the molecular surface
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Continuum solvation methods

Solvent-accessible surface area

When does it work?

if the electrostatic effect of the surrounding solvent dominates
(shielding of solvent-exposed charged side chains of proteins)

not if there is specific solute–solvent interaction
(like hydrogen bonding)

Difficult example: dynamics of small peptides dissolved in water
– competition between various hydrogen-bonding patterns



Non-bonded interactions

Continuum solvation methods

Continuum electrostatics methods

Big question: how to calculate ∆Gele?

often used is the term “reaction field”

∆Gele = q · Φrf(~r)

for moving the cavity with the solute from vacuo to the solvent
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Continuum solvation methods

Born and Onsager models

Born: the work to bring charge q from vacuo
into spherical cavity of radius a
in solvent with dielectric constant ε:

∆Gele = −q2

2a

(
1− 1

ε

)
ε: 1 for vacuo (thus ∆Gele = 0), 80 for water, 2 to 20 for protein

Onsager and Kirkwood: model for dipole µ in cavity

Φrf =
2(ε− 1)

2ε+ 1
· 1

a3
· µ

∆Gele = −1

2
Φrf · µ
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Continuum solvation methods

Born and Onsager models

simple models

implemented in many standard programs

quite uneralistis approximations even for small molecules

Extensions:

polarizable continuum model (PCM) –
arbitrary surfaces constructed
with the use of vdW radii of individual atoms

conductor-like screening models (COSMO) –
polarization of the dielectric (insulating) solvent
derived from scaled-conductor approximation.
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Continuum solvation methods

Poisson–Boltzmann equation (PBE)

For big molecules, the simple models may be too simple and
inefficient at the same time :-(

other approximations – starting from Poisson’s equation

∇ε∇Φ = −4πρ

given – charge distribution ρ and dielectric constant ε
to be found – potential Φ

possibility to solve:
– discretize on a 3D grid,

use finite differences
calc. Φ on every grid point

iteratively
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Continuum solvation methods

Ions in the solvent

ions are very important – counterions compensate charged solute,
or salt mimicks physiologic conditions

the position of ions depends on the potential:

ρions =
∑
i

qi · ci · exp

[
−qi · Φ(r)

kBT

]
or: anions like to be where Φ > 0, and cations like Φ < 0

an additional term appears in Poisson’s equation:
linearized Poisson–Boltzmann equation at low ionic strength:

∇ε∇Φ = −4πρ+ ε · κ2 · Φ(r)

with the Debye–Hückel parameter κ2 = 8πq2I
ε·kBT

(ionic strength I = 1
2

∑
i ciz

2
i , ci concentration, zi charge of ion i)
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Ions in the solvent – PBE

charge distribution on the protein
polarizes the dielectric outside (“solvent”)
→ screening of any solvent-exposed charges of the protein

effectively, charges pointing into the solvent will vanish nearly

solvent ions will distribute to make
the overall charge distribution more uniform

if a negative charge points into the solvent,
a cation will be located close to it

The solvent around a protein should always be taken into account.

PBE – not efficient enough to be calculated in every MD step
→ approximations are necessary
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Generalized Born model (GB)

idea – use the simple Born equation for MM atomic charges

∆G 1
ele = −

(
1− 1

ε

)∑
i

q2
i

2ai

the interaction of individual charges changes in solution

Eele =
1

2

∑
i 6=j

1

ε

qi · qj
rij

=

=
1

2

∑
i 6=j

qi · qj
rij
−1

2

(
1− 1

ε

)∑
i 6=j

qi · qj
rij

giving another contribution to solvation free energy

∆G 2
ele = −1

2

(
1− 1

ε

)∑
i 6=j

qi · qj
rij

solvation free energy = ∆G 1
ele + ∆G 2

ele
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Generalized Born model (GB)

problem 1 – Born’s formula holds for interaction of charges
located in spherical cavities (with radii ai )

– only valid for charged bodies of general shapes if rij � ai + aj
– two extreme cases are covered:

E =


q2
i

ai
, if i = j (‘self-interaction, i.e. solvation energy)

qi · qj
rij

, if i 6= j and rij →∞

what to do at intermediate distances (2 Å to 10 Å)? interpolate!

f (rij) =

√√√√r2
ij + aiaj exp

[
−

r2
ij

4aiaj

]

∆Gele = −1

2

(
1− 1

ε

)
·
∑
i ,j

qi · qj
f (rij)
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Generalized Born model (GB)

Born’s equation holds for a charged particle in contact with solvent

problem 2 – many charges are buried deeply inside the protein,
far from the solvent!

→ solvation free energy may be overestimated heavily

possible solution – scale up ai in a reasonable way!

the most important task when using the GB method
– to use/calculate reasonable radii ai
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How to get the radii in GB

approximate interaction energy of a charge qi in the protein interior
with the solvent:

∆G i
ele = − 1

8π

(
1− 1

εW

)∫
ext

q2
i

r4
dV

integration runs over
the ‘exterior’ of the protein

comparing with the Born formula, we find

1

ai
=

1

4π

∫
ext

1

r4
dV

r – distance from the charge to the ‘boundary’ of the protein.
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How to get the radii in GB

several GB models exist; generally,
∫

ext transformed to
∫

int

GB molecular volume – with van der Waals radius αi :

1

ai
=

1

αi
− 1

4π

∫
int,r>αi

1

r4
dV

– possibly longish calculation time

pairwise models – the interior ≈ union of atomic spheres

1

ai
=

1

αi
−
∑
j 6=i

1

4π

∫
sphere j

1

r4
dV

– this is insufficient because of partial overlap / void places
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How to get the radii in GB

several GB models exist; generally,
∫

ext transformed to
∫

int

GB molecular volume – with van der Waals radius αi :

1

ai
=

1

αi
− 1

4π

∫
int,r>αi

1

r4
dV

– possibly longish calculation time

pairwise models – the interior ≈ union of atomic spheres
empirical formula may be used instead:

1

ai
=

1

λ · RvdW,i
− P1

1

R2
vdW,i

−
bond∑
j

P2Vj

r4
ij

−
angle∑
j

P3Vj

r4
ij

−
nonbond∑

j

P4Vj

r4
ij

· CCF(P5, rij)
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MM-PBSA

another application of implicit solvent models

free energies of binding of ligands to biomolecules

post-processing approach to evaluate free energies

a normal MD simulation is run,
and free energies are computed a posteriori

binding free energy obtained component-wise with various methods
solvation free energy – with Poisson–Boltzmann or so
non-polar contribution – SASA-dependent terms
configurational entropy – normal-mode analysis

very approximative, yet may still give results of good quality
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