Molecular dynamics simulation

how to get things moving

Marcus Elstner and Tomáš Kubař

2017, May 5

Motivation

Consider a (bio)molecule in aqueous solution

- at ambient conditions
- structure is varying
- interactions are varying (H-bonds)
- the energy of the system is fluctuating
- description with a single, static structure meaningless
- \blacksquare an interesting process may be going on $\textcircled{\sc o}$
- then, multiple 'structures' may be relevant

State of the system

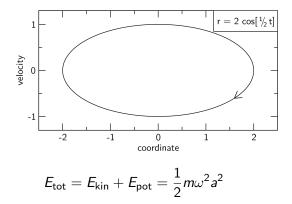
• (micro)state of a system:

positions $\vec{r_i}$ and momenta $\vec{p_i}$ of all the atoms

- configuration space 3N-dimensional space of coordinates
- **phase space** 6*N*-dim. space of coords and momenta $\{\vec{r_i}, \vec{p_i}\}$
- trajectory in phase space sequence of points $\{\vec{r}_i(t), \vec{p}_i(t)\}$ passed by the system in course of time

State of the system

example – 1D harmonic oscillator: time course of coordinate and of velocity

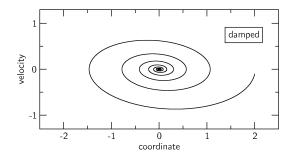

$$r(t) = a \cdot \cos [\omega t]$$

 $v(t) = -a \omega \cdot \sin [\omega t]$

plot of velocity vs. coordinate – in 2D phase space: elliptic trajectory

$$\left(\frac{x(t)}{a}\right)^2 + \left(\frac{v(t)}{a\cdot\omega}\right)^2 = 1$$

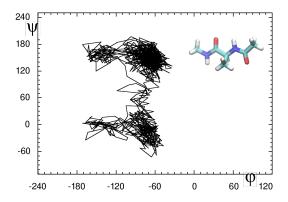
State of the system


Example – 1D harmonic oscillator:

conservative system - total energy remains conserved (constant)

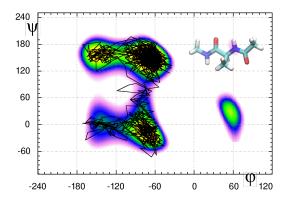
State of the system

Example – 1D harmonic oscillator:



with friction or other damping

- the total energy of the system is decreasing


State of the system

Example – alanine dipeptide in aqueous solution: config. space of dihedral angles $\varphi - \psi$ (Ramachandran plot)

State of the system

Example – alanine dipeptide in aqueous solution: config. space of dihedral angles $\varphi - \psi$ (Ramachandran plot)

Thermodynamic properties

Back to the molecule in solution:

MD simulation – we generate a trajectory in phase space for some time \rightarrow snapshots $\{\vec{r_i}(t_k), \vec{p_i}(t_k)\}$, evaluate energy in time instants $t_k \ (k = 1, ..., M) \rightarrow E_k$ and calculate the average:

$$\langle E \rangle_t = \frac{1}{M} \sum_{k=1}^M E_k$$

we do this for the product and for the reactant,

obtain averages for both states and subtract them

Thermodynamic properties

we obtain the trajectory by doing an MD simulation

- a good idea, but still there are issues:
- Do we have enough snapshots? all relevant conformations?
- How do we consider experimental conditions temperature?
- Suppose we know the structure of the reactant. How do we get the structure of the product? or even the whole reaction path?
- Does the average of energy provide useful information? What about free energies / entropy?

Thermodynamic properties

Characteristics of (bio)molecular simulations:

- it is easy to derive the total energy force field
- not so easy to make proper use of the energy function to get the thermodynamic properties right

it is all about thermodynamics in possible contrast to quantum chemistry

Thermodynamic properties

time average for energy and other properties of interest:

$$\langle A \rangle_t = rac{1}{t_1 - t_0} \int_{t_0}^{t_1} A(t) \, \mathrm{d}t$$

experimental sample – huge number of molecules, all relevant conformations of molecule/solvent are present – thermodynamic ensemble

How many molecules in the ensemble are found in $\{\vec{r_i}, \vec{p_i}\}$?

- \rightarrow phase-space density (per volume unit) $\rho(\vec{r}, \vec{p})$
- \rightarrow ensemble average can be calculated:

$$\langle A \rangle_e = \frac{\int A \cdot \rho(\vec{r}, \vec{p}) \, \mathrm{d}\vec{r} \, \mathrm{d}\vec{p}}{\int \rho(\vec{r}, \vec{p}) \, \mathrm{d}\vec{r} \, \mathrm{d}\vec{p}}$$

Thermodynamic properties

experiment – ensemble average is always measured simulation – a single molecule – time average available

simulation – system is considered ergodic

passes through all points of phase space constituting the real ensemble provided the simulation is long enough
implies:

$$\langle A \rangle_t = \langle A \rangle_e$$

the topic of sampling, danger of undersampling

Déjà vu – energy

$$E(R^N) =$$

$$= \frac{1}{2} \sum_{i} k_{i} (r_{i} - r_{i}^{0})^{2} + \frac{1}{2} \sum_{j} k_{j}^{\vartheta} (\vartheta_{j} - \vartheta_{j}^{0})^{2} + \frac{1}{2} \sum_{n} V_{n} \cdot \cos[n\omega - \gamma_{n}] \\ + \sum_{i}^{N} \sum_{j=i+1}^{N} \left\{ 4\varepsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right) + \frac{1}{4\pi\varepsilon_{0}} \frac{q_{i}q_{j}}{r_{ij}} \right\}$$

Déjà vu – forces

$$V = V(r_{ij}) + V(r_{ik}) + V(r_{il}) + \ldots$$

$$F_{i}^{x} = -\frac{\partial V}{\partial x_{i}} = -\frac{\partial V(r_{ij})}{\partial r_{ij}}\frac{\partial r_{ij}}{\partial x_{i}} - \frac{\partial V(r_{ik})}{\partial r_{ik}}\frac{\partial r_{ik}}{\partial x_{i}} - \frac{\partial V(r_{il})}{\partial r_{il}}\frac{\partial r_{il}}{\partial x_{i}} - \dots$$

$$r = \frac{2}{r_{2}^{2}} \qquad V = \frac{1}{2}k(r-r_{0})^{2}$$
(1)
$$r = \sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}+(z_{1}-z_{2})^{2}}$$

$$\vec{r}_{1}^{2}$$

$$ec{F_1} = -k(r_{12} - r_0) \cdot rac{ec{r_{12}}}{r_{12}}$$

Equations of motion

total energy – Hamilton function (Hamiltonian):

$$H = T + V = \frac{1}{2}\frac{p^2}{m} + \frac{1}{2}kr^2$$

equations of motion in Hamilton's formalism:

$$\dot{r}_i = rac{\partial H}{\partial p_i}$$
 $\dot{p}_i = -rac{\partial H}{\partial r_i}$

leading to ordinary differential eqn (ODE) of 2nd order

$$\dot{r} = \frac{\partial H}{\partial p} = \frac{p}{m} \rightarrow p = m\dot{r} \rightarrow \dot{p} = m \cdot \ddot{r}$$
$$\dot{p} = -\frac{\partial H}{\partial r} = -\frac{\partial V}{\partial r} = F$$
$$m \cdot \ddot{r} = F$$

Molecular dynamics simulation

Integration of equations of motion

Equations of motion

example – harmonic oscillator: $H = \frac{1}{2} \frac{p^2}{m} + \frac{1}{2} kr^2$

$$\dot{r} = \frac{\partial H}{\partial p} = \frac{p}{m}$$

 $\dot{p} = -\frac{\partial H}{\partial r} = F = -k \cdot r$

equation of motion:

$$m \cdot \ddot{r} = -k \cdot r$$

- We will use the same concept considering x, y, z of all of the atoms instead of r, and taking forces from the 'long equation'
- Hamilton / Lagrange formalisms are more general
 - other coordinates than x, y, z of atoms may be used
 - internal coordinates . . .

Relevant differential equations

1st-order ODE

- generally: $\dot{x} = f(x, t)$
- example: $\dot{x} = -k \cdot x$
- solution: $x(t) = A \cdot \exp[-k \cdot t]$
- e.g. radioactive decay, dynamics of populations

Relevant differential equations

2nd-order ODE:

- $\ddot{x} = f(x, \dot{x}, t)$
- example: eqn of motion of harmonic oscillator $\ddot{x} = -\frac{k}{m} \cdot x$
- with linear damping: $\ddot{x} = -\zeta \cdot \dot{x} \frac{k}{m} \cdot x$
- reduction of 2nd-order ODE to two 1st-order ODEs by introducing velocity v:

$$\dot{x} = v \dot{v} = -\zeta \cdot v - \frac{k}{m} \cdot x$$

these ODEs have to be solved numerically

(Too) simple numerical solution

$$\ddot{r}=f(r,t)$$

common trick – Taylor expansion ($\Delta t = t - t_0$):

$$r(t) = r(t_0) + \dot{r}(t_0) \cdot \Delta t + \frac{1}{2}\ddot{r}(t_0) \cdot \Delta t^2 + \dots$$

Euler method – 1st-order approximation:

$$r(t) \approx r(t_0) + \dot{r}(t_0) \cdot \Delta t$$

Numerical integration starts at time t_0 – we make a step Δt :

$$a(t_0) = -\frac{F}{m}$$

$$r(t_0 + \Delta t) = r(t_0) + v(t_0) \cdot \Delta t$$

$$v(t_0 + \Delta t) = v(t_0) + a(t_0) \cdot \Delta t$$

Verlet – normal form

Euler method – too large numerical error $O(\Delta t^2)$ more accurate integration is needed Verlet method:

Taylor expansion up to 2nd order,

derivation from two virtual steps, forwards and backwards:

$$r(t + \Delta t) = r(t) + \dot{r}(t) \cdot \Delta t + \frac{1}{2}\ddot{r}(t) \cdot \Delta t^{2}$$

$$r(t - \Delta t) = r(t) - \dot{r}(t) \cdot \Delta t + \frac{1}{2}\ddot{r}(t) \cdot \Delta t^{2}$$

add both equations – eliminate the velocity \dot{r} :

$$r(t + \Delta t) = 2 \cdot r(t) - r(t - \Delta t) + \ddot{r}(t)\Delta t^{2}$$
$$\ddot{r}(t) = a(t) = \frac{F(t)}{m} = -\frac{1}{m}\frac{\partial V}{\partial r}(t)$$

Verlet – normal form

$$r(t + \Delta t) = 2 \cdot r(t) - r(t - \Delta t) + \ddot{r}(t)\Delta t^2$$

strange – not only r(t) and a(t) needed, but also $r(t - \Delta t)$? no problem – information equivalent to velocity, so that initial conditions may be converted:

$$r(t_0 - \Delta t) = r(t_0) - v(t_0) \cdot \Delta t$$

velocities - not in there explicitly, but may be obtained:

$$\dot{r}(t) = v(t) = rac{r(t + \Delta t) - r(t - \Delta t)}{2 \cdot \Delta t}$$

(Verlet normal form)

Verlet – normal form

```
program for 'astronomic' simulations: (\vec{F} = -1/r^2 \cdot \vec{r}/r)
```

```
/* initial "old" positions from initial velocities */
for (k=0; k<DIM; k++)</pre>
    r old[k] = r[k] - v[k] * dt;
for (t=0.; t < CYCLES*PERIOD; t+=dt) {</pre>
    /* distance (from the Sun) */
    rnorm = sqrt(NORM2(r));
    /* gravitation force (on the comet)
     * f = -1 / r^2
     * multiply this by the unit vector in the direction of r
     * f = -1 / r^2 * vector(r) / r
     */
    for (k=0; k<DIM; k++)</pre>
        f[k] = -r[k] / CUB(rnorm);
    /* Verlet integrator */
    for (k=0; k<DIM; k++) {</pre>
        r new = 2 * r[k] - r old[k] + f[k] * SQR(dt);
        r old[k] = r[k];
        r[k] = r new;
    }
```

Detailed balance

In equilibrium, this condition holds:

The rate of transitions from state i to state j

is the same as from j to i, on average.

In the other words: the flux of probability from state i to state j is exactly balanced by the probability flux from j to i:

$$p_{i \to j} \cdot \rho_i^{\mathsf{eq}} = p_{j \to i} \cdot \rho_j^{\mathsf{eq}}$$

The probability ρ depends on the ensemble (which in turn depends on the conditions):

■ isolated system – microcanonical ensemble: principle of equal a priori probabilities, $\rho_i^{eq} = \rho$

• closed system – canonical ensemble: $\rho_i^{eq} \propto \exp[-\beta E_i]$

Any MD algorithm/implementation shall observe detailed balance!

Velocity Verlet

another, equivalent formulation

positions calculated first using velocities

$$r(t + \Delta t) = r(t) + v(t) \cdot \Delta t + \frac{1}{2}a(t) \cdot \Delta t^2$$

• forces (\rightarrow accelerations) calculated in new positions, and new velocities obtained as

$$v(t + \Delta t) = v(t) + \frac{1}{2} (a(t) + a(t + \Delta t)) \cdot \Delta t$$

 next calculation of positions r...
 MD is started with the knowledge of r₀ and v₀ in every step, r(t + Δt) is calculated first so that a(t + Δt) can be updated, to get v(t + Δt)

Velocity Verlet

VV – better numerical precision than normal Verlet numerical problem of normal Verlet

– adding a small but important term $\ddot{r}(t_0)\Delta t^2$

to a large term calculated as difference: $2r(t) - r(t - \Delta t)$

- large relative uncertainty

desirable – use an algorithm that is mathematically equivalent but does not require to perform potentially problematic calculations

Leap-frog

yet another equivalent formulation, similar to VV

- -r and v are evaluated in an alternating fashion:
- r(t), $v(t+\frac{1}{2}\Delta t)$, $r(t+\Delta t)$, $v(t+\frac{3}{2}\Delta t)$, $r(t+2\Delta t)$...

• velocities at $t + \frac{1}{2}\Delta t$ are obtained first:

$$v(t+rac{1}{2}\Delta t)=v(t-rac{1}{2}\Delta t)+a(t)\cdot\Delta t$$

• then, positions are updated at $t + \Delta t$:

$$r(t + \Delta t) = r(t) + v(t + \frac{1}{2}\Delta t) \cdot \Delta t$$

So, accelerations have to be calculated at t, $t + \Delta t$, $t + 2\Delta t$... from forces, and positions are needed to compute forces – in fact positions have to be known at the same t that we need a

Initial conditions

To start the MD

- the positions r_0 and the velocities v_0 have to be specified First step - calculations of forces at r_0 to get accelerations a_0 Then - the integrator may provide r (and v) at time $t_0 + \Delta t$

To obtain a trajectory over a time interval T, we perform M steps

- we have to evaluate the forces on all atoms $M = T/\Delta t$ times

Computational cost of the calculation of forces determines how many steps we can afford to make

Δt – crucial parameter

Numerical issue:

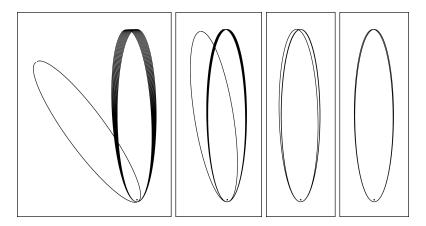
- we neglect contributions in Δt^3 and higher orders \rightarrow error per step in the order of $\Delta t^3 (\mathcal{O}(\Delta t^3))$
- keep the step short \rightarrow make the error small
- disadvantage: we may need too many steps to simulate certain time T
- trade-off: \(\Delta t\) too long \(\to too \) large error dynamics may deviate, momentum may not be conserved...

Δt – crucial parameter

Chemical issue:

- fastest motion hydrogen atoms, period around 10 fs
- rule of thumb stable integration with Δt ≤ fastest period (much more relaxed than in 'astronomic' simulations ☺)
- practically, Δt of 1 fs is used (2 fs with special treatment)

 \rightarrow 1M calculations of forces needes for a trajectory of 1 ns large systems – multi-ns simulations routinely, μs possible


Δt – astronomic test

static heavy object (star) + moving light object (comet) + gravity ($F = -1/r^2$) \rightarrow dynamics with Verlet integrator gravity - inverse-square law much like Coulomb between atoms exact trajectory - periodic along an ellipse with star in 1 focus

simulation – four different values of the time step: 1×10^{-5} , 2×10^{-5} , 5×10^{-5} and 10×10^{-5} of the orbital period \rightarrow 100k, 50k, 20k and 10k steps per period – mmore than in MD

Δt – astronomic test

first 10 orbits are shown, and then the 100th shown again

Δt – astronomic test

shortest step – reasonable trajectory, small deviation 2nd-longest step – error becomes evident longest step – large deviation

important - trajectory is precessing (ellipse is 'rotating'), but it remains elliptic whatever the time step is constant remain also total energy and orbital period

- consequence of reversibility of Verlet:
- if we reverse the course of time $(\Delta t
 ightarrow -\Delta t)$,

we will simulate towards initial conditions of the trajectory

generally – energy in Verlet fluctuates (with longer step), but it does not drift └─ More advanced methods

Verlet or something better?

Verlet – very approximative yet still routinely used for MD why? – because it is efficient – why?

- forces on atoms (\rightarrow accelerations) calculated only 1 \times per step
- no higher derivatives of positions are involved

more accurate methods to integrate ODEs are available, and are used in some applications, if improved accuracy is required

straightforward – involve extra terms from Taylor expansion – hardly ever done, there are other ways to improve accuracy...

└─ More advanced methods

Gear: predictor-corrector

- provides solution correct to an order of choice
- new positions are calculated (predicted) from Taylor expansion using a certain number of previous steps
- then, forces (→ accelerations) are calculated in the predicted positions
- accelerations used to make correction of positions
- additional computational effort, decreased efficiency
- accuracy may be improved significantly, longer step possible
- still, only 1 calculation of forces per step

└─ More advanced methods

Gear: predictor-corrector

*n*th-order Gear integrator:

coords of all atoms \vec{r} and their derivatives up to the order of n-1:

$$R = \begin{pmatrix} \vec{r} \\ \dot{\vec{r}} \cdot \Delta t \\ \vdots \\ \vec{r} \cdot \frac{1}{2} \Delta t^2 \\ \vdots \\ \vec{r} \cdot \frac{1}{6} \Delta t^3 \end{pmatrix}$$

for the 4th-order method

initialization: \vec{r} and $\dot{\vec{r}}$ from init. conditions, $\ddot{\vec{r}}$ calculated from forces

 1 calculation of forces required at start higher derivatives may be set to zero

Gear: 1: prediction

MD step at time t starts with prediction of coordinates+derivatives at time $t + \Delta t$:

$$R_{
m p}(t+\Delta t) = egin{pmatrix} 1 & 1 & 1 & 1 \ 0 & 1 & 2 & 3 \ 0 & 0 & 1 & 3 \ 0 & 0 & 0 & 1 \ \end{pmatrix} \cdot R(t)$$

- the matrix contains binomial coefficients
- the calculation passes a polynomial of order n − 1 through the previous n points of the trajectory (at t, t − Δt,...t − (n − 1)Δt) and generates a point on this polynomial after Δt
- prediction may be good for continuous force functionsno calculation of force up to this point!

next, we calculate the error of the prediction: we obtain the force at the predicted position, and compare it with the force predicted in step $1 \rightarrow$ error

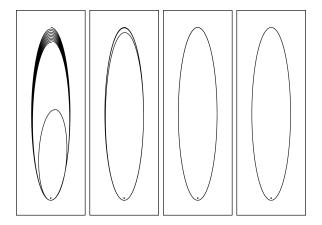
$$E = \frac{1}{2} \left(\frac{\vec{f}(\vec{r_p})}{m} - \ddot{\vec{r_p}} \right) \Delta t^2$$

E – vector with as many components as the vector of coordinates (every coordinate with its derivatives has 'its own' error)

Gear: 3: correction

Finally, using the error E, we calculate the corrected coordinates and derivatives as

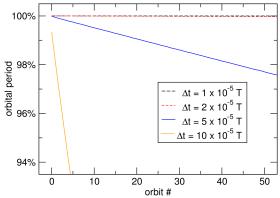
$$R(t + \Delta t) = R_{p}(t + \Delta t) + E \cdot \begin{pmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \end{pmatrix}$$


coefficients $a_0, a_1 \dots a_{n-1}$

- estimated to prevent the accumulation of integration errors
- may be looked up in tables
- for 4th-order method for 2nd-order ODE and forces not depending on velocities:

$$a_0=rac{1}{6}$$
, $a_1=rac{5}{6}$, $a_2=1$ and $a_3=rac{1}{3}$

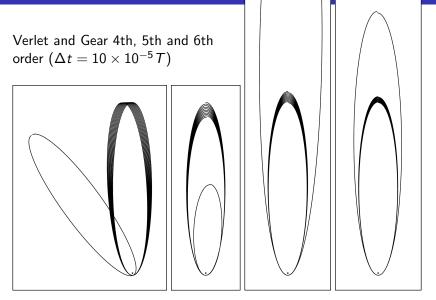
Gear – astronomic test


 $\Delta t = 10 imes 10^{-5}$, $5 imes 10^{-5}$, $2 imes 10^{-5}$ and $1 imes 10^{-5}$ of correct period

Gear – astronomic test

- \blacksquare Gear may provide more accurate trajectories than Verlet, with the same Δt
- perfect trajectories with the two shortest time steps (Verlet showed deviations even with the shortest step)
- incorrect behavior with the second-largest step, just wrong with the longest one
- different character of deviation than with Verlet: the elliptic trajectory of the comet is getting 'shorter', rather than precessing
- important: the orbital period is becoming shorter, and total energy is decreasing

Gear – astronomic test



general observation:

energy will decrease or increase (drift) in the simulation this may be negligible with longer step / higher-order Gear Gear: not reversible, does not conserve energy. Molecular dynamics simulation

└─ More advanced methods

Gear - higher order?

note: Verlet corresponds to 3th-order Gear formally higher derivatives in calculation improve the results only slightly – the drift of energy is slower but still unsatisfactory

general observations:

- when making the step shorter, results of higher-order methods will improve faster
- when making the time step longer, higher-order methods are more prone to fail completely while lower-order methods are more robust
- higher-order integrators are a good choice if accurate trajectories are desired
- lower-order or Verlet integration is sufficient for applications with 'weaker' requirements – typically, MD

Runge-Kutta integration

Runge–Kutta methods – numerical integrators of 1st-order ODEs classical 4th-order method RK4:

- 4 calculations of the derivative in every step
- points at which the derivative is calculated
 - chosen depending on the previous calculations,
 - the first is done at the start of the integration step

$$g_0 = \dot{r}(r(t))$$

$$g_1 = \dot{r}(r(t) + \frac{1}{2}g_0\Delta t)$$

$$g_2 = \dot{r}(r(t) + \frac{1}{2}g_1\Delta t)$$

$$g_3 = \dot{r}(r(t) + g_2\Delta t)$$

We calculate the value of the function at time $t + \Delta t$ using a weighted average of the obtained derivative values:

$$r_{n+1} = r_n + \frac{1}{6} (g_0 + 2g_1 + 2g_2 + g_3) \cdot \Delta t$$

the RK4 method

derivative of y is calculated at points m_0 , m_1 , m_2 and m_3 calculated derivatives g_0, \ldots, g_3 are shown as arrows

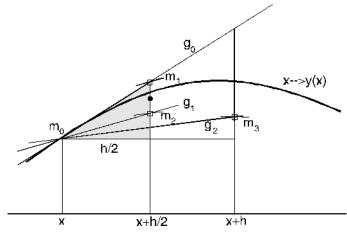


image downloaded from www.hsg-kl.de

the RK4 method

- actually predictor-corrector with 4 predictions per step
- 4 calculations of the derivative needed per step
- error per step reduced to $\mathcal{O}(\Delta t^5)$ 4th-order method
- solves 1st-order ODEs much like the Euler method does
- to solve Newton eqns of motion (2nd-order ODEs)
 - eqns are converted to system of two 1st-order eqns
 - positions and velocities of atoms are propagated:

$$\dot{\vec{r}} = \vec{v}$$

 $\dot{\vec{v}} = \frac{\vec{f}}{m}$

the RK4 method

Can RK4 be used directly somewhere in computational chemistry? Yes! Let us propagates a time-dependent Schrödinger equation

– 1st-order ODE for the wave function $\boldsymbol{\Psi}$ of the system:

$$rac{\partial \Psi}{\partial t} = -rac{i}{\hbar}\hat{H}\Psi$$

- we express Ψ as linear combination of suitable basis functions: $\Psi = \sum_m c_m \varphi_m$
- Hamiltonian is a matrix of elements between basis functions: $H_{mn} = \left\langle \varphi_m \left| \hat{H} \right| \varphi_n \right\rangle$
- we calculate the derivative with matrix multiplication as $H \cdot \Psi$