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2017, June 23 and 27



Introduction

Modeling of biomolecules

Potential energy surface: Eel = Eel(R1, . . . ,RN)
(coordinates of atoms/nuclei R1, . . . ,RN)

Approximations:

Born–Oppenheimer approximation

separation of nuclei and electrons
Eel obtained for fixed positions of nuclei

Classical description of nuclei

rather than quantum mechanics
for the motion of the nuclei

Application of a force field

harmonic springs
point-charge electrostatics
. . .



Introduction

Energy with a force field
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Introduction

Limitations of the force field approximation

The parameters have to be determined / fitted

difficult for certain / unusual elements (e.g., transition metals)

Conceptual limitations

chemical bonds cannot be broken or created

atom types are pre-determined

atomic charges are pre-determined and constant
– no change of electron density can be described

Electrons are not described explicitly, so no wave function

only ground-state energy and forces are available

no spectroscopic properties (interaction with light)

no photochemistry (excited states)



Introduction

Quantum chemistry vs. force fields

Quantum mechanics:
electronic wave functions: Ψel = Ψel(r1, . . . , rN)

(coordinates of electrons r1, . . . , rN)
solve the electronic Schrdinger equation

Ĥ{R}Ψ{R} = Eel(R1, . . . ,RN)Ψ{R}

Quantum chemistry

wave function theory (WFT)

density functional theory (DFT)

→ calculation of energy is computationally intensive

Force field methods

evaluate Eel ‘directly’, do not look for the electronic structure

→ calculation of energy is very quick and efficient



Geometry optimization

Potential energy surface

electronic energy is a function of coordinates of nuclei {R I}

E = E (R1, . . . ,RN)

→ electronic energy defines the potential energy surface (PES)

example: a diatomic molecule
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→ all of the calculations only provide the PES point-wise



Geometry optimization

Sampling of the potential energy surface

chemically interesting :
stationary points

on the PES

minimum:
‘equilibrium’ structure,
stable conformation of a molecule

saddle point of 1st order:
transition state (TS),
point of maximum energy along the direction of a ‘reaction’



Geometry optimization

Potential energy surface

minimum: any change of structure → increase of energy

saddle point of 1st order: maximum along one coordinate,
(reaction coordinate) × minimum along any other coordinate



Geometry optimization

Characterization of stationary points

How shall we find the interesting stationary points?

Example: Minimum of energy of a diatomic molecules
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Geometry optimization

Characterization of stationary points

How shall we find the interesting stationary points?
generally: 3N atom coordinates; E = E (R1, . . . ,RN)

Condition for stationary points:

Gradient: g = ∇E =
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Condition for minimum: all eigenvalues of H are positive

Saddle point of 1st order: one eigenvalue of H is negative,
all of the others are non-negative



Geometry optimization

Characterization of stationary points

How shall we find the interesting stationary points?

Is it possible to sample the PES systematically?
– example: 10 atoms, 3N − 6 = 24) coordinates

10 points per coordinate → 1024 calculations of energy!
100 points per coordinate → 10240 calculations!

→ finding the global minimum – very difficult problem

chemical intuition – concentrate on meaningful structures

→ local minima, transition states between low-energy regions

What do we need now?

calculation of gradients (and Hessian)

algorithm

to optimize the geometry (search for a local minimum)
to search for transition states



Geometry optimization

Geometry optimization

→ search for a local minimum, starting from a suitable structure

starting structure?
– depends on the

chemical problem

convergence criterion? e.g.

|g | =

√∑

I ,α

g2
I ,α < t

how shall we determine
the new structure?

try to make as few steps as possible
(calculation of energy/gradients is expensive)

avoid any calculation of Hessian
(that is even more expensive)



Geometry optimization

Geometry optimization

How to make a step towards a minimum?

Example: geometry optimization of a diatomic molecule
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Startpunkt

Gradient

follow the negative of gradient: R i+1 = R i + ∆R i = R i −αg i

how shall the step length α be determined?



Geometry optimization

Steepest descents optimization

Step along the negative of gradient

∆R i = αd i d i = −g i

Choice of the step length α?

too short → too many steps needed

too long → overshoot the minimum

‘line search’:
choose α such that the energy

in direction of gradient d i = −g i

is minimized
– calculate the energy
at several points along a line

Then, the convergence is guaranteed.
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In three dimensions (corresponding to one atom), the gradient reads10
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The unit vector in the direction of the gradient is given by

!e =
!g

|!g| (II.8)

A. Steepest-descent minimization (SD)

Within the method of steepest descent, the optimizer moves iteratively – in steps !h along

the direction of the force

!h = α · !e (II.9)

The critical point here is the choice of the step size α. If the step is too long, we follow the

gradient down the potential though but may miss the minimum along the gradient and go

up the valley on the opposite side. If the step is too short, we may need to perform too

many steps, which in turn means too many (costly) evaluations of energy and forces.

FIG. 11: Steepest descent minimization

One way to overcome this problem is to perform a line search along the direction !e, and

find a minimum on this line. In other words, we are looking for a value of αk such that rk+1

10 using nabla — the formal vector of partial derivatives ∇ ≡
(
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)
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FIG. 12: Line search

is the minimum along the search direction ek:

!rk+1 = !rk + αk!ek (II.10)

The interesting and important point is that two successive search directions (steps) are

orthogonal to each other:

!hk−1 · !hk = 0 (II.11)

A problem may arise if the energy function forms a narrow valley. In such a case, the second

next search direction will be similar. Therefore, an efficient strategy attempts to avoid this

double work and looks for search directions that are orthogonal to all previous ones.

FIG. 13: Problem of SD in a narrow valley

B. Conjugate gradient minimization

Consider the Taylor series of a 3N -dimensional function up to the second order:
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Geometry optimization

Conjugate gradient optimization

Problems of steepest descents

too many steps in similar
directions (in narrow valleys)

convergence is getting slower
when close to the minimum

descent path oscillates around the minimum path, as illustrated in Figure 12.2, and this
is particularly problematic for surfaces having long narrow valleys.

Furthermore, as the minimum is approached, the rate of convergence slows down.
The steepest descent will actually never reach the minimum, it will crawl towards it at
an ever decreasing speed.

An accurate line search requires several function evaluations along each search
direction. Often the minimization along the line is only carried out fairly crudely, or a
single step is simply taken along the negative gradient direction. In the latter case, the
step size is varied dynamically during the optimization; if the previous step reduced
the function value, the next step is taken with a slightly longer step size, but if the func-
tion values increased, the step size is reduced. Without an accurate line search, the
guarantee for lowering of the function value is lost, and the optimization may poten-
tially end up in an oscillatory state.

By its nature, the steepest descent method can only locate function minima. The
advantage is that the algorithm is very simple, and requires only storage of a gradient
vector. It is furthermore one of the few methods that is guaranteed to lower the func-
tion value. Its main use is to quickly relax a poor starting point, before some of the
more advanced algorithms take over, or as a “backup” algorithm if the more sophisti-
cated methods are unable to lower the function value.

12.2.2 Conjugate gradient methods

The main problem with the steepest descent method is the partial “undoing” of the
previous step. The Conjugate Gradient (CG) method tries to improve on this by per-
forming each line search not along the current gradient but along a line that is con-
structed such that it is “conjugate” to the previous search direction(s). If the surface is
purely quadratic, the conjugate direction criterion guarantees that each successive min-
imization will not generate gradient components along any of the previous directions,
and the minimum is reached after at most Nvar steps. The first step is equivalent to a
steepest descent step, but subsequent searches are performed along a line formed as
a mixture of the current negative gradient and the previous search direction.

(12.7)d g di i i i= − + −b 1
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Figure 12.2 Steepest descent minimization

Solution – conjugate gradient optimization

make the step d i orthogonal to all of the previous ones

d i = −g i + βid i−1

various schemes: Fletcher–Reeves or Polak–Riebere:

βFRi =
g t
i g i

g t
i−1g i−1

βPRi =
(g i − g i−1)tg i

g t
i−1g i−1



Geometry optimization

Newton–Raphson optimization

Taylor expansion of the PES around R i :

E (R) = E (R i ) + g i · (R − R i ) + 1
2(R − R i )

t ·H i · (R − R i ) + · · ·

minimum of this Taylor expansion up to the 2nd order:

dE

dR
= g i + H i · (R − R i ) = 0→ H i · (R − R i ) = −g i

Newton–Raphson optimization:

calculate the step toward the minimum from that expression:

∆R i = −H−1i · g i

(on a harmonic PES, this would lead to the minimum directly)

Problem: the calculation of Hessian in every step is expensive



Geometry optimization

Quasi-Newton optimization

Apply an approximated Hessian rather than the exact Hessian

start e.g. with a unit matrix (→ 1 steepest-descents step)

other starting Hessians may be better
– full calculation (just once), or from certain simple rules

in every step, use the gradients g i

to improve the approximated Hessian H̃ i ,
then invert it for ∆R i = −H−1i · g i

usually converges quickly and reliably, at the cost of
storage for Hessian of O(N2) and its inversion of O(N3)

compare: CG is O(N) but converges more slowly

a standard method in most quantum chemical / MD packages



Geometry optimization

Quasi-Newton optimization

various update algorithms are available

Broyden–Fletcher–Goldfarb–Shanno (BFGS):

H̃ i+1 = H̃ i +
∆g i ⊗∆g t

i

∆g t
i ·∆R i

− H̃ i ·∆R i ⊗∆Rt
i · H̃ i

∆g t
i · H̃ i ·∆R i

– symmetric and positive-definite
– minimizes the change in Hessian

limited-memory BFGS (L-BFGS)
– propagate the inverse Hessian (not the Hessian itself)
→ the O(N3) matrix inversion is eliminated

– do not store the Hessian or inverse Hessian in memory
– rather, reconstruct the matrix on the fly

from ∆g i & ∆R i over a few (< 10) last steps
→ the O(N2) storage requirement is eliminated



Geometry optimization

Quasi-Newton optimization

q-N converges the better, the closer PES is to a quadratic form
– depends on the choice of coordinate system strongly

Possible choices of coordinate system

cartesian coordinates
– simple, but not adjusted to a ‘chemical’ problem
→ often slow convergence

internal coordinates
– use bond lengths, angles and torsional angles
→ often good convergence
→ but the definition of 3N − 6 coordinates difficult

redundant internal coordinates
– use ‘too many’ internal coordinates
→ mostly good convergence
→ simple automatized definition is possible

more complex coordinate systems possible



Geometry optimization

Quasi-Newton optimization



Geometry optimization

Summary: geometry optimization

starting point: a chemically meaningful structure

minimization procedures:

steepest descents: converges always, but slowly
better: conjugate gradients, quasi-Newton (e.g. BFGS)

– all of these avoid the calculation of Hessian

biomolecules – often very difficult to find true minima

in the quantum chemistry

calculations mostly limited to a single minimum
starting point for the calculation of properties (spectra. . . )

with the force field methods

starting point for MD around a minimum (and beyond)
pre-optimization for quantum chemical calculations



Vibrational analysis

Potential energy surface

Energy is a function of atomic coordinates
Eel,i (R1, . . . ,RN) – PES from quantum chemistry or force field

Is it possible to generate the entire potential energy surface?
– example: 10 atoms, 3N − 6 = 24) coordinates

10 points per coordinate → 1024 calculations of energy!
100 points per coordinate → 10240 calculations!

No! only concentrate on the region close to a minimum

Search for a local minimum: geometry optimization

requires a chemically meaningful starting structure

calculation of electronic energy and its gradients
in several (few) points of the coordinate space

In the region close to a local minimum

apply Taylor expansion to the PES



Vibrational analysis

Harmonic approximation

move the origin of coordinates into the local minimum of PES:

R I ,0 = o (null vector)

→ the variables {R I} give the deviation from minimum

Taylor expansion of energy

Eel({R I}) = Eel({o})︸ ︷︷ ︸
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→ gradients in a local minimum of PES vanish



Vibrational analysis

Harmonic approximation

terminate the Taylor series after the second order

write the 2nd derivatives in a matrix form – Hessian:

F = {Fij} =

{
∂2Eel

∂Ri ∂Rj

}

coupling of coordinates of different nuclei
the same property – covariance matrix in PCA!

condense the atomic masses into the coordinates:

R(m)
I =

√
MIR I

F (m) = M−1/2 · F ·M−1/2

look for: a linear combination of mass-weighted coordinates
that diagonalizes the Hessian → normal coordinates {qi}



Vibrational analysis

Harmonic approximation

normal coordinates {qi}, normal modes {Q(i)}:

qi =
3N∑

j=1

Q
(i)
j R

(m)
j so that

∂2Eel

∂qi ∂qj
= 0 ∀i 6= j

Q = (Q(1), · · · ,Q(3N))T and Q(i) = (Q
(i)
1,x , · · · ,Q

(i)
3N,z)

F (q) = QT · F (m) ·Q is the diagonalization problem to solve

eigenvalues of energy of the harmonic oscillator
– vibrational frequencies ωi follow from Hessian eigenvalues

ωi =

√
F
(q)
ii

note: with PCA upon MD trajectory, harmonic frequencies
are obtained from the eigenvalues of the covariance matrix

for molecules in the gas phase:
translations+rotations are separated from the vibrations



Vibrational analysis

Summary: vibrational analysis

starting point: local minimum on the PES

calculate the Hessian – most computationally intensive step:

F =

{
∂2Eel

∂Ri ∂Rj

}

introduce mass weighting:

F (m) = M−1/2 · F ·M−1/2

diagonalize the mass-weighted Hessian:

F (q) = QT · F (m) ·Q

calculate the vibrational frequencies from the eigenvalues:

ωi =

√
F
(q)
ii



Transition state search

Transition states

How to describe a chemical reaction / another process of interest?

structure/energy of reactant/product → reaction energy ∆Hr

structure/energy of the transition state → rate of the process

transition state theory (TST):

k =
kBT

h
· exp

[
−∆G#

kBT

]

free energy of the TS:

∆G# = ∆H# − T∆S#

from quantum chemistry:

∆H# = ETS − Ereactant

from vibrational analysis: ∆S#

(via stat. thermodynamics)



Transition state search

Optimization of transition states

‘One-structure’ / local methods

start with a suitable initial structure

optimize TS with a (quasi-)Newton method

follow one eigenvector up
to reach one negative eigenvalue of H

Necessary:

starting structure already close to the TS

good starting Hessian (for quasi-Newton)

good choice of the coordinate system
even more important than in a usual geometry optimization



Transition state search

Optimization of transition states

‘One-structure’ / local methods

start with a suitable initial structure

optimize TS with a (quasi-)Newton method

follow one eigenvector up
to reach one negative eigenvalue of H

Common procedures:

optimize the geometry of the reactant and the product

search for a good starting structure
– e.g. linear transit between the reactant and the product

for quasi-Newton, usually calculate
the full Hessian for the starting structure
to use as a starting Hessian



Transition state search

Optimization of transition states

How to find a suitable starting structure for the TS search?

should be good – as close as possible to the true TS
easiest way: follow a (guessed) reaction coordinate

e.g. bond length/angle that is changing during reaction

linear transit: vary this coordinate in regular steps
in every step, optimize all of the other coordinates

(‘constraint optimization’ with the selected coordinate fixed)
maximum of energy along this path → starting structure



Transition state search

Optimization of transition states

Alternative: ‘two-structure’ methods

start from reactant and product; encircle the TS step-by-step

A related idea is used in the Line-Then-Plane (LTP) algorithm,23 where the con-
strained optimization is done in the hyperplane perpendicular to the interpolation line
between the two end-points, rather than on a hypersphere.

The Ridge method initially locates the energy maximum along the LST path con-
necting the reactant and product, and defines two points on either side of the energy
maximum.24 These points are allowed to relax in the downhill direction a given dis-
tance, and a new energy maximum is located along the interpolation line connecting
the two relaxed points, and the cycle is repeated. As the saddle point is approached,
the two ridge points gradually contract on the actual TS.This method requires a careful
adjustment of the magnitude of the “side” and “downhill” steps as the optimization
proceeds.

The Step-and-Slide algorithm25 is a variation where the reactant and product struc-
tures are stepped along the LST line until they have energies equal to a preset value.
Both structures are then optimized with respect to minimizing the distance between
them, subject to being on an isoenergetic contour surface. The energy is increase, fol-
lowed by another step-and-slide optimization, and this sequence is continued until the
distance between the two structures decreases to zero, i.e. converging on the saddle
point.

12.4.3 Multi-structure interpolation methods: chain, locally updated planes,
self-penalty walk, conjugate peak refinement and nudged elastic band

The methods in this section operate with multiple (more than two) structures or images
connecting the reactant and product, and are often called chain-of-state methods.
Relaxation of the images will in favourable cases not only lead to the saddle point, but
also to an approximation of the whole reaction path. The initial distribution of struc-
tures will typically be along a straight line connecting the reactant and product (LST),
but may also involve one or more intermediate geometries to guide the search in a
certain direction.

The Self-Penalty Walk (SPW) method approximates the reaction path by minimiz-
ing the average energy along the path, given as a line integral between the reactant
and product geometries (R and P).26
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Figure 12.7 Illustration of the saddle method; energy minima on the hyperspheres are denoted 
by •Alternative: ‘multiple-structure’ methods

start with a linear interpolation between reactant and product

optimize structuren along the entire reaction path

During the relaxation the chain may form loops, in which case intermediate point(s)
is (are) discarded. Similarly, it may be necessary to add points to keep the distance
between neighbours below dmax.

The Locally Updated Planes (LUP) minimization is related to the chain method,
where the relaxation is done in the hyperplane perpendicular to the reaction coordi-
nate, rather than along a line defined by the gradient.29 Furthermore, all the points are
moved in each iteration, rather than one at a time.

The Conjugate Peak Refinement (CPR) method may be considered as a dynamical
version of the chain method, where points are added or removed based on a sequence
of maximizations along line segments and minimizations along the conjugate direc-
tions.30 The first cycle is analogous to the Bell and Crighton version of the QST: loca-
tion of an energy maximum along a line between the reactant and product, followed
by a sequential minimization in the conjugate directions. The corresponding point
becomes a new path point, and an attempt is made to locate an LST maximum between
the reactant and midpoint, and between the midpoint and product. If such a maximum
is found, it is followed by a new conjugate minimization, which then defines a new
intermediate point, etc. The advantage over the chain and LUP methods is that points
tend to be distributed in the important region near the TS, rather than uniformly over
the whole reaction path.

In practice, it may not be possible to minimize the energy in all the conjugate direc-
tions, since the energy surface in general is not quadratic. Once the gradient compo-
nent along the LST path between two neighbouring points exceeds a suitable tolerance
during the sequential line minimizations, the optimization is terminated and the geom-
etry becomes a new interpolation point. It may also happen that one of the interpola-
tion points has the highest energy along the path without being sufficiently close to a
TS (as measured by the magnitude of the gradient), in which case the point is removed
and a new interpolation is performed.

The Nudged Elastic Band (NEB) method defines a target function (“elastic band”)
as the sum of energies of all images and adds a penalty term having the purpose of
distributing the points along the path.31 A single spring constant k will distribute the
images evenly along the path, but it may also be taken to depend on the energy in
order to provide a better sampling near the saddle point.

(12.26)T E kM i
i

M

i i
i
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Figure 12.9 Illustration of the chain method; initial points along the path are denoted by x, and
relaxed points are denoted by •



Transition state search

Nudged elastic bands

method for finding saddle points and minimum energy paths
between known reactants and products

optimizes a number of intermediates along the reaction path

each image finds the lowest energy possible
while maintaining equal spacing to neighboring images

restrained optimization:

1 add harmonic springs between intermediates along the band
2 project out the component of spring force ⊥ to the band



Transition state search

Nudged elastic bands

construct a set of replicas of the system (≈ 4− 20)
between the initial and final state

add a harmonic spring interaction between adjacent replicas
– ensure continuity, much like an elastic ‘band’ would do

during optimization, the ‘band’ induces forces on the replicas
and brings the replicas to the minimum energy path

http://uspex.stonybrook.edu



Transition state search

Nudged elastic bands – example

alanine dipeptide in implicit or explicit solvent

‘partial NEB’ – the NEB forces are applied
on a part of the molecular system (solute, or its part)

Walker et al., Int J Quantum Chem 2009



Transition state search

Conjugate peak refinement

CPR

robust method to locate TS for systems with many atoms

iterative algorithm

a single intermediate point is either added, refined or removed
during a given iteration

finally: the only local maxima in energy left
along the path are true saddle points (TS)



Transition state search

Conjugate peak refinement

coarse scan along the line r − p → maximum near y10
(s0 is the direction r − p)

maximization along the line r − p → maximum y11
minimization along conjugate vector from y11 → minimum x1

(the conjugate vector is s1 = −g1 +
gT
1 h

sT0 h
s0 with h ≈ Hs0)

molecular systems – minimize along several conjug. vectors



Transition state search

Conjugate peak refinement

x1 is new intermediate on the path which now has 2 segments

repeat the procedure along the lines r − x1 and x1 − p

find the maximum y21 and,
along the conjugate direction, the minimum x2

x2 is already a saddle point – meets 2 conditions:

RMS gradient of the energy at x2 is nearly zero
x2 is still a maximum despite resulting from line minimizations



Transition state search

Conjugate peak refinement

repeat the procedure along the line x2 − p

find the maximum y31 and,
along the conjugate direction, the minimum x3

RMS gradient at x3 is small, so it is close
to a stationary point (here, saddle point)



Transition state search

Conjugate peak refinement

x3 is refined to produce a saddle point

search is performed along the line t3
which is an average of x3 − x2 and p − x3

line maximization followed by conjugate line minimization(s)
gives the saddle point x ′3

RMS gradient of the energy at x ′3 is nearly zero
x ′3 is still a maximum despite resulting from line minimizations



Transition state search

Conjugate peak refinement – example

active site of bacteriorhodopsin

long-range proton transfer reaction
over several intermediates

first half of the last proton transfer step

chemical reaction → QM/MM necessary

the various structures built (‘models’)
differ in the number of H2O molecules

in the active site
→ very different minimum energy paths



Transition state search

Conjugate peak refinement – example

structural model with 1 water molecule



Transition state search

Conjugate peak refinement – example

structural model with 3 water molecules



Transition state search

Summary: transition states

Optimization of TS is much more difficult
than a normal optimization of an energy minimum

one-structure methods:
good starting structure and starting Hessian are essential

multiple-structure methods:
usually more robust, but not always available/applicable

after the optimization of TS:
always calculate the Hessian to check if it really is a TS!

in quantum chemistry:

description of chemical reactions (→ activation energy)
but, reaction rates require very accurate energies

with force field methods:

chemical reactions impossible, only conformational changes
then, the meaning of TS not always clear
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