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Introduction

Modeling of biomolecules

Potential energy surface: E, = Ey(R1,...,Ry)
(coordinates of atoms/nuclei Ry,..., Ry)

Approximations:

m Born—-Oppenheimer approximation
m separation of nuclei and electrons
m £, obtained for fixed positions of nuclei
m Classical description of nuclei
m rather than quantum mechanics
for the motion of the nuclei
m Application of a force field

m harmonic springs
m point-charge electrostatics
n ...
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Introduction

Limitations of the force field approximation

The parameters have to be determined / fitted
m difficult for certain / unusual elements (e.g., transition metals)
Conceptual limitations

m chemical bonds cannot be broken or created
m atom types are pre-determined
m atomic charges are pre-determined and constant
— no change of electron density can be described

Electrons are not described explicitly, so no wave function

m only ground-state energy and forces are available
m no spectroscopic properties (interaction with light)

m no photochemistry (excited states)



Introduction

Quantum chemistry vs. force fields

Quantum mechanics:

electronic wave functions: We = W (ry,...,ry)
(coordinates of electrons rq,...,ry)

solve the electronic Schrdinger equation

ARMARY — E\(Ry, ..., Ry)VIR

Quantum chemistry

m wave function theory (WFT)
m density functional theory (DFT)

— calculation of energy is computationally intensive

Force field methods

m evaluate E ‘directly’, do not look for the electronic structure

— calculation of energy is very quick and efficient



Geometry optimization

Potential energy surface

electronic energy is a function of coordinates of nuclei {R;}
E=E(Ry,...,Ry)
— electronic energy defines the potential energy surface (PES)

example: a diatomic molecule

— all of the calculations only provide the PES point-wise



Geometry optimization

Sampling of the potential energy surface

chemically interesting:
stationary points
on the PES
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®E minimum:
‘equilibrium’ structure,
stable conformation of a molecule

m saddle point of 1st order:
transition state (TS),
point of maximum energy along the direction of a ‘reaction’



Geometry optimization

Potential energy surface

Maximum
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coordinates  \finimum
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Reaction coordinate

m minimum: any change of structure — increase of energy

m saddle point of 1st order: maximum along one coordinate,
(reaction coordinate) x minimum along any other coordinate



Geometry optimization

Characterization of stationary points

How shall we find the interesting stationary points?
Example: Minimum of energy of a diatomic molecules

E

Ty

. : . dE
m condition for a stationary points: ad - 0

d?E

m additional condition for a minimum: 482 >0



Geometry optimization

Characterization of stationary points

How shall we find the interesting stationary points?
generally: 3N atom coordinates; E = E(Ry,...,Ry)

Condition for stationary points:

dE dE dE dE dE\"
Gradient g=VE=(—,—, —,—,...,— | =0
radient- & <dX1 dy1 d21 dX2 dZN>
Second derivatives:
d’E d2E d’E d2E
dxl2 dxidys  dxidzi  dxidx
d?E d’E d2E d2E

Hessian: H = dyrdx dy? dyidz1  dyidx;

m Condition for minimum: all eigenvalues of H are positive

m Saddle point of 1st order: one eigenvalue of H is negative,
all of the others are non-negative



Geometry optimization

Characterization of stationary points

How shall we find the interesting stationary points?

m s it possible to sample the PES systematically?
— example: 10 atoms, 3N — 6 = 24) coordinates
10 points per coordinate — 10?4 calculations of energy!
100 points per coordinate — 10%*° calculations!

— finding the global minimum — very difficult problem

m chemical intuition — concentrate on meaningful structures

— local minima, transition states between low-energy regions

What do we need now?
m calculation of gradients (and Hessian)

m algorithm

m to optimize the geometry (search for a local minimum)
m to search for transition states



Geometry optimization

Geometry optimization

— search for a local minimum, starting from a suitable structure

guess a starting structure

(obtain wave function)
calculate energy

gradient

calculate gradient is small

gradient is|too large

— determine a new structure

end

m starting structure?
— depends on the
chemical problem

m convergence criterion? e.g.

gl = D g, <t
l,c

m how shall we determine
the new structure?

m try to make as few steps as possible
(calculation of energy/gradients is expensive)

m avoid any calculation of Hessian
(that is even more expensive)



Geometry optimization

Geometry optimization

How to make a step towards a minimum?

Example: geometry optimization of a diatomic molecule
E

A dp

Startpunkt

Gradient

NDZ a

Ty

m follow the negative of gradient: R;11 = Ri+ AR; = R; — ag;

m how shall the step length a be determined?



Geometry optimization

Steepest descents optimization

m Step along the negative of gradient

AR;=ad; d;=—g;

m Choice of the step length a? -
m too short — too many steps needed >
m too long — overshoot the minimum

m ‘line search’:

choose « such that the energy =
in direction of gradient d; = —g; ﬁ@x -‘k,‘

is minimized o
— calculate the energy '
at several points along a line

m Then, the convergence is guaranteed.



Geometry optimization

Conjugate gradient optimization

Problems of steepest descents

m too many steps in similar

directions (in narrow valleys) o
B convergence is getting slower

when close to the minimum
Solution — conjugate gradient optimization

m make the step d; orthogonal to all of the previous ones

di=—g;+pidi
m various schemes: Fletcher—Reeves or Polak—Riebere:

FR__Bi8i  ger_ (8818
' gf_lgi—l ' gf_lg;—l



Geometry optimization

Newton—Raphson optimization

Taylor expansion of the PES around R;:
E(R)=E(R)+g-(R-R)+3(R-R)"-Hi-(R-R)+---

minimum of this Taylor expansion up to the 2nd order:

dE

de:gi—l-H,"(R—Ri):O—)H,"(R—Ri):—gi

Newton—Raphson optimization:
calculate the step toward the minimum from that expression:
-1
AR;=—-H;" -g;
(on a harmonic PES, this would lead to the minimum directly)

Problem: the calculation of Hessian in every step is expensive



Geometry optimization

Quasi-Newton optimization

Apply an approximated Hessian rather than the exact Hessian

start e.g. with a unit matrix (— 1 steepest-descents step)

other starting Hessians may be better
— full calculation (just once), or from certain simple rules

m in every step, use the gradients g;
to improve the approximated Hessian H;,
then invert it for AR; = —Hlfl -5

usually converges quickly and reliably, at the cost of
storage for Hessian of O(N?) and its inversion of O(N3)

compare: CG is O(N) but converges more slowly

a standard method in most quantum chemical / MD packages



Geometry optimization

Quasi-Newton optimization

various update algorithms are available
m Broyden—Fletcher—Goldfarb—Shanno (BFGS):

Hipi=H;+ Ag,-t® Agi _Hi AR 8 AR; - H,
Ag;-AR; Ag,?'H,--AR,-
— symmetric and positive-definite

— minimizes the change in Hessian

m limited-memory BFGS (L-BFGS)
— propagate the inverse Hessian (not the Hessian itself)
— the O(N3) matrix inversion is eliminated
— do not store the Hessian or inverse Hessian in memory
— rather, reconstruct the matrix on the fly
from Ag; & AR; over a few (< 10) last steps
— the O(N?) storage requirement is eliminated



Geometry optimization

Quasi-Newton optimization

g-N converges the better, the closer PES is to a quadratic form
— depends on the choice of coordinate system strongly

Possible choices of coordinate system

m cartesian coordinates
— simple, but not adjusted to a ‘chemical’ problem
— often slow convergence

m internal coordinates
— use bond lengths, angles and torsional angles
— often good convergence
— but the definition of 3N — 6 coordinates difficult

m redundant internal coordinates
— use 'too many’ internal coordinates
— mostly good convergence
— simple automatized definition is possible

m more complex coordinate systems possible



Geometry optimization

Quasi-Newton optimization

Choose coordinate system;
Input starting geometry;
Obtain initial estimate of Hessian.

'S

Calculate energy and gradient.

-

Update the Hessian.

_ v

J Use Hessian and gradient to take a step.

Employ RFO or TRM.
Check for convergence. yes
‘ no
yes
Check for maximum cycles. Stop
I no

Update geometry.




Geometry optimization

Summary: geometry optimization

starting point: a chemically meaningful structure

minimization procedures:

m steepest descents: converges always, but slowly
m better: conjugate gradients, quasi-Newton (e.g. BFGS)
— all of these avoid the calculation of Hessian

m biomolecules — often very difficult to find true minima

in the quantum chemistry

m calculations mostly limited to a single minimum
m starting point for the calculation of properties (spectra. . .)

m with the force field methods

m starting point for MD around a minimum (and beyond)
m pre-optimization for quantum chemical calculations



Vibrational analysis

Potential energy surface

Energy is a function of atomic coordinates
Eci(R1,...,Rn) — PES from quantum chemistry or force field

m Is it possible to generate the entire potential energy surface?
— example: 10 atoms, 3N — 6 = 24) coordinates
10 points per coordinate — 10%* calculations of energy!
100 points per coordinate — 10249 calculations!

m No! only concentrate on the region close to a minimum
Search for a local minimum: geometry optimization

m requires a chemically meaningful starting structure
m calculation of electronic energy and its gradients
in several (few) points of the coordinate space
In the region close to a local minimum

m apply Taylor expansion to the PES



Vibrational analysis
Harmonic approximation

m move the origin of coordinates into the local minimum of PES:
R;o = o (null vector)

— the variables {R,} give the deviation from minimum
m Taylor expansion of energy

Ee|({R[}) = Eqy {O} —|—ZZ ( 8Eel >R ) Rl,a

=1 a=1

const

=0
M 3
1 O?E,
- R 2 e R 3
)3 /a(aR,aaRw)R, Rus + O(RY,)
=0

— gradients in a local minimum of PES vanish



Vibrational analysis

Harmonic approximation

m terminate the Taylor series after the second order

m write the 2nd derivatives in a matrix form — Hessian:

0?E,
F={F)={-——°
m coupling of coordinates of different nuclei
m the same property — covariance matrix in PCA!

m condense the atomic masses into the coordinates:
RI™ = /MR,
F(m — pm-Y2. . pm1/2

m look for: a linear combination of mass-weighted coordinates
that diagonalizes the Hessian — normal coordinates {q;}



Vibrational analysis

Harmonic approximation

m normal coordinates {g;}, normal modes {Q()}:

= o) lm) O%Ea
g = Q:"R™  so that S =0 Vi#j
; O 94; 0; 7
Q@ = (QW,-, Q") and QW =(QY.---,ql),)
F@ = QT.F(™.Q isthe diagonalization problem to solve

m eigenvalues of energy of the harmonic oscillator
— vibrational frequencies w; follow from Hessian eigenvalues
q
wi = FiE' :
note: with PCA upon MD trajectory, harmonic frequencies
are obtained from the eigenvalues of the covariance matrix

m for molecules in the gas phase:
translations+rotations are separated from the vibrations



Vibrational analysis

Summary: vibrational analysis

m starting point: local minimum on the PES

m calculate the Hessian — most computationally intensive step:
Fo O?E
~ | 9R; OR;

m introduce mass weighting:

F(m) — pm~Y2. F. m~1/2

diagonalize the mass-weighted Hessian:
Fla = QT.Fm.Q

m calculate the vibrational frequencies from the eigenvalues:

wi = Flo

"



Transition state search

Transition states

How to describe a chemical reaction / another process of interest?

Energy

AG*

AG=0—

AG, T

m structure/energy of reactant/product — reaction energy AH,

m structure/energy of the transition state — rate of the process

Reactant

Perpendicular
coordinates

Product

Reaction coordinate

m transition state theory (TST):
ke T [ AG#]
- ex

k=-2" -
h ke T

m free energy of the TS:
AG# = AH# — TAS#

m from quantum chemistry:
AH# = ETS - Ereactant

m from vibrational analysis: AS#
(via stat. thermodynamics)



Transition state search

Optimization of transition states

‘One-structure’ / local methods

m start with a suitable initial structure
m optimize TS with a (quasi-)Newton method
m follow one eigenvector up
to reach one negative eigenvalue of H
Necessary:
m starting structure already close to the TS
m good starting Hessian (for quasi-Newton)

m good choice of the coordinate system
even more important than in a usual geometry optimization



Transition state search

Optimization of transition states

‘One-structure’ / local methods

m start with a suitable initial structure
m optimize TS with a (quasi-)Newton method
m follow one eigenvector up
to reach one negative eigenvalue of H
Common procedures:
m optimize the geometry of the reactant and the product

m search for a good starting structure
— e.g. linear transit between the reactant and the product

m for quasi-Newton, usually calculate
the full Hessian for the starting structure
to use as a starting Hessian



Transition state search

Optimization of transition states

How to find a suitable starting structure for the TS search?

m should be good — as close as possible to the true TS
m easiest way: follow a (guessed) reaction coordinate
e.g. bond length/angle that is changing during reaction

m linear transit: vary this coordinate in regular steps

m in every step, optimize all of the other coordinates
(‘constraint optimization’ with the selected coordinate fixed)

m maximum of energy along this path — starting structure

linear transit

Reaktionspfad
(minimum energy path)



Transition state search

Optimization of transition states

Alternative: ‘two-structure’ methods

m start from reactant and product; encircle the TS step-by-step

Alternative: ‘multiple-structure’ methods
m start with a linear interpolation between reactant and product
m optimize structuren along the entire reaction path

N N Xz

,,"‘ \\ Relaxed
X3, .2 ~\ path

R e P




Transition state search

Nudged elastic bands

m method for finding saddle points and minimum energy paths
between known reactants and products

m optimizes a number of intermediates along the reaction path

m each image finds the lowest energy possible
while maintaining equal spacing to neighboring images
m restrained optimization:

add harmonic springs between intermediates along the band
project out the component of spring force | to the band



Transition state search

Nudged elastic bands

m construct a set of replicas of the system (= 4 — 20)
between the initial and final state

m add a harmonic spring interaction between adjacent replicas
— ensure continuity, much like an elastic ‘band’ would do

m during optimization, the ‘band’ induces forces on the replicas
and brings the replicas to the minimum energy path

:init/::tal http: /uspex.stonybrook.edu
=



Transition state search

Nudged elastic bands — example

m alanine dipeptide in implicit or explicit solvent

m ‘partial NEB' — the NEB forces are applied
on a part of the molecular system (solute, or its part)

@ W, X
ws &=
Ao o Y

¢
F “ ‘0 «‘

:' {«‘ " "1’1

Walker et al., Int J Quantum Chem 2009



Transition state search

Conjugate peak refinement

CPR
m robust method to locate TS for systems with many atoms
m iterative algorithm
m a single intermediate point is either added, refined or removed
during a given iteration
m finally: the only local maxima in energy left
along the path are true saddle points (TS)



Transition state search

Conjugate peak refinement

m coarse scan along the line r — p — maximum near y}
(so is the direction r — p)

m maximization along the line r — p — maximum y;
®m minimization along conjugate vector from yil — minimum xq

(the conjugate vector is s; = —g1 + so with h ~ Hsp)

m molecular systems — minimize along several conjug. vectors



Transition state search

Conjugate peak refinement

m X1 is new intermediate on the path which now has 2 segments
B repeat the procedure along the lines r — x; and x; — p
m find the maximum y? and,
along the conjugate direction, the minimum x;
B Xy is already a saddle point — meets 2 conditions:

m RMS gradient of the energy at x, is nearly zero
m X is still a maximum despite resulting from line minimizations



Transition state search

Conjugate peak refinement

m repeat the procedure along the line xo — p
m find the maximum yl3 and,

along the conjugate direction, the minimum x3
m RMS gradient at x3 is small, so it is close

to a stationary point (here, saddle point)



Transition state search

Conjugate peak refinement

m x3 is refined to produce a saddle point

m search is performed along the line t3
which is an average of x3 — x and p — x3

m line maximization followed by conjugate line minimization(s)
gives the saddle point xj

m RMS gradient of the energy at xj is nearly zero
B x5 is still a maximum despite resulting from line minimizations



Transition state search

Conjugate peak refinement — example

m active site of bacteriorhodopsin

m long-range proton transfer reaction
over several intermediates

m first half of the last proton transfer step
m chemical reaction — QM/MM necessary

m the various structures built (‘models’)
differ in the number of H>O molecules
in the active site
— very different minimum energy paths




Transition state search

Conjugate peak refinement — example

structural model with 1 water molecule
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Transition state search

Conjugate peak refinement — example

structural model with 3 water molecules

(b) model-A%"
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Transition state search

Summary: transition states

Optimization of TS is much more difficult

than a normal optimization of an energy minimum
one-structure methods:

good starting structure and starting Hessian are essential
multiple-structure methods:

usually more robust, but not always available/applicable
after the optimization of TS:

always calculate the Hessian to check if it really is a TS!
in quantum chemistry:

m description of chemical reactions (— activation energy)

m but, reaction rates require very accurate energies
with force field methods:

m chemical reactions impossible, only conformational changes
m then, the meaning of TS not always clear
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