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Enhancing the sampling

Problem

with normal nanosecond length MD simulations:

It is difficult to overcome barriers to conformational transitions,

only conformations around the initial structure may be sampled,

even if a different conformation is more likely – has lower ∆G

Special techniques are required to solve this problem.



Enhancing the sampling

MD as a way to the global minimum

Finding the global minimum of energy

MD may also be used for optimization

Assume a set of N atoms with many possible configurations
– this is truly the case with large (bio)molecules

The energy of these configurations is in general different,

one of them will be the lowest;

each of the configurations is a local minimum of energy

separated from every other by an energy barrier

“A molecular dynamics primer” by Furio Ercolessi, University of Udine, Italy
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MD as a way to the global minimum

Finding the global minimum of energy

the most favorable structure

tricky with traditional minimization techniques
(steepest-descents, conjugate gradients, etc.)

energy barriers cannot be overcome at all,
the system falls into the nearest local minimum

possible solution – try out several different starting points,
hopefully in the neighborhood of different local minima,
from which one would hopefully be the global

we cannot be really sure if we will find the global minimum
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Enhancing the sampling

MD as a way to the global minimum

Simulated annealing

key to overcome barriers in MD or MC – temperature

state with energy E visited with probability (frequency)

P ∝ exp

[
− E

kBT

]

if T large – many different minima populated

what if we decrease T slowly to zero?
system will be trapped in the deepest minimum possibly

principle of simulated annealing:

system is equilibrated at a certain temperature

and then slowly cooled down to T = 0

no formal guarantee of success, but it often works

no a priori assumptions / no intuition needed
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MD as a way to the global minimum

Simulated annealing

– much more generally useful for optimization:

given an objective function Z (α1, . . . , αN) of N parameters,
one can regard each of these parameters as a degree of freedom,
assign it a “mass”, and let the system evolve with MD or MC
to perform simulated annealing.

an early application – problem of the traveling salesman
Kirkpatrick et al., Science 1983



Enhancing the sampling

MD as a way to the global minimum

Molecular dynamics with quenching

yet another possibility to make use of MD
not only to get the minima of the energy,
but even to approximate their relative free energies

MD/quenching simulation

make a usual MD simulation

in regular intervals, energy-minimize from current structure

the MD takes care of starting structures for minimizations
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MD as a way to the global minimum

Molecular dynamics with quenching

The obtained (possibly many) minimized structures
can be processed e.g. by a cluster analysis
to determine the set of unique optimal structures,
their total energies and number of hits.

For a small molecular system, we would observe
few unique structures, each occuring many times.

For larger systems, the number of unique structures grows rapidly.
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MD as a way to the global minimum

Free energies with MD/Q

If the MD simulation is long enough
(i.e. the sampling of configuration space is sufficient):

the ratio of occurrence of the individual minimized structures (ni )
determines the equilibrium constant K and the free energy ∆G :

K =
n2

n1

∆G = −kBT logK = kBT log
n2

n1
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MD as a way to the global minimum

Note on free energies

We consider whole regions of configuration space
rather than points to be the individual structures.

Therefore, we obtain no curves of free energy as a function
of coordinate(s) but rather single values of free energy differences
for certain pairs of “structures”.

Nearly philosophical question:
Is there something like “free energy surface” at all?

Or, is it only meaningful to ask
for discrete values of free energy differences?



Enhancing the sampling

Energy barriers

Energy barriers in simulations

Energy landscapes in large (bio)molecular systems
– multitude of almost iso-energetic minima,
separated from each other by energy barriers of various heights

Each of these minima ≡ one particular structure (conformation);
neighboring minima correspond to similar structures

Structural transitions are barrier crossings, and
the transition rate is determined by the height of the barrier.

Using quotations by Helmut Grubmüller



Enhancing the sampling

Energy barriers

Energy barriers in simulations

Normal MD – only nanosecond time scales are accessible,
so only the smallest barriers are overcome in simulations,
and only small structural changes occur.

k ∝ exp [−EA/kT ]

The larger barriers are traversed more rarely
(although the transition process itself may well be fast),
and thus are not observed in MD simulations.



Enhancing the sampling

Energy barriers

Note – do not be afraid of Arrhenius

How often does something happen in a simulation?
k = A× exp [−EA/kT ], e.g. A = 1× 109 s−1

EA k 1/k
kcal/mol 1/s µs

1 0.19× 109 0.005
3 6.7× 106 0.15
5 0.24× 106 4.2
7 8.6× 103 120

If the process has to overcome a barrier of 5 kcal/mol,
we have to simulate for 4 µs to see it happen once on average.
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Enhancing the sampling

Methods using biasing potentials

Conformational flooding

to accelerate conformational transitions in MD simulations
by several orders of magnitude

makes it possible to simulate slow conformational transitions

1 generate a trajectory with a normal MD simulation

2 using the ensemble of structures from that trajectory,
construct a localized artificial flooding potential Vfl:

Vfl shall affect only the initial conformation
and vanish everywhere outside of this region of conf. space

Vfl shall be well-behaved (smooth)
and ‘flood’ the entire initial potential-energy well

Grubmüller, Phys. Rev. E 1995
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Methods using biasing potentials

Conformational flooding

from the website of Helmut Grubmüller
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Methods using biasing potentials

Flooding potential

so, the simulation is performed with Hamiltonian

H = T + V + Vfl

a multivariate (n-dimensional) Gaussian function is good:

Vfl = Efl · exp

[
− Efl

2kBT
·

n∑
i=1

q2
i λi

]

Efl – strength of the flooding potential (constant)
qi – coordinates along the first n essential dynamics modes (PCA)

the first n PCA modes with eigenvalues λi will be flooded
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Methods using biasing potentials

The course of flooding simulation

The flooding potential is added to the force field,
and ‘flooding’ (biased) simulations are performed.

The energy minimum of the initial conformation is elevated
→ the height of barriers is reduced
→ the transitions are accelerated (TS theory)

Only the energy landscape within the minimum was modified →
the dynamics is already known there → uninteresting

the barriers and all the other minima are unbiased
– may be studied (are usually of interest)

CF is expected to induce unbiased transitions
– those that would occur without flooding (but slower)
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Methods using biasing potentials

Metadynamics

a similar idea as flooding – discourage
revisiting of states that have already been sampled

‘to reconstruct multidimensional ∆G of complex systems’

artificial dynamics (metadynamics) performed
in the space defined by a few collective variables S ,
assumed to give a coarse-grained description of the system

history-dependent biasing potential constructed as a sum
of Gaussians centered at points visited in the simulation

Laio & Parrinello, Proc. Natl. Acad. Sci. 2002

using quotations by Alessandro Laio
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Methods using biasing potentials

Metadynamics – how it works

a new Gaussian is added at every time interval tG

the biasing potential at time t is given by

VG (S(x), t) =
∑

t′=tG ,2tG ,3tG ,...

w · exp

[
−(S(x)− st′)

2

2 · δs2

]

w and δs – height and width of the Gaussians (preset)
st = S(x(t)) – value of the collective variable at time t

the simulation is performed with time-dependent Hamiltonian

H = T + V + VG (S(x), t)



Enhancing the sampling

Methods using biasing potentials

Metadynamics – what it looks like

https://www.youtube.com/watch?v=IzEBpQ0c8TA

https://www.youtube.com/watch?v=iu2GtQAyoj0
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Methods using biasing potentials

Metadynamics – how it works

biasing potential is filling minima on the free energy surface
that the system visits during the MD

energy surface ≡ true free energy + sum of biasing Gaussians
– is a function of collective variable(s) S
– is becoming constant as simulation time is progressing

the MD has a kind of memory via the biasing potential
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Methods using biasing potentials

Properties of metadynamics

explores new reaction pathways

accelerate rare events

estimates free energies efficiently

the system escapes a local free energy minimum
through the lowest free-energy saddle point.

the free-energy profile is filled with the biasing Gaussians

the sum of the Gaussians → (negative of) the free energy:

lim
t→∞

VG (S , t) = −∆F (S) + const

(if the dynamics along the remaining degrees of freedom
is much faster than the dynamics along S)
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Methods using biasing potentials

Properties of metadynamics

Crucial point – identify the variables that are of interest
and are difficult to sample because of barriers
that cannot be cleared in the available simulation time.

These variables S(x) are functions of the coordinates of the system;
practical applications – up to 3 such variables,
and the choice depend on the process being studied.

Typical choices – principal modes of motion obtained with PCA
Still, the choice of S may be far from trivial.
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Methods using biasing potentials

Metadynamics – example – alanine dipeptide

22 atoms, 1 pair of ϕ− ψ angles

one of the smallest molecules with peptide bonds

sum of all biasing Gaussians during the simulation
→ estimate of free energy ∆G (in kcal/mol)

whenever the current global minimum is populated further,
its estimate of ∆G decreases,
i.e. ∆G everywhere else increases



Enhancing the sampling

Methods using biasing potentials

Metadynamics – example – alanine dipeptide
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Methods using biasing potentials

Metadynamics – example – glutamate receptor GluA2

opening/closing of the ligand-binding domain (LBD)
known ligand AMPA, novel ligand 2-BnTetAMPA (BTA)

collective variables: three dominant eigenvectors from PCA:
clamshell motion, twisting motion and rocking motion

500 ns of metadynamics simulations of each complex
two minima – open (O) and closed (C) state of LBD
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Methods using biasing potentials

Metadynamics – example – binding pocket of a protein

courtesy Tino Wolter



Enhancing the sampling

Replica-exchange MD

Replica-exchange molecular dynamics

REMD / parallel tempering

method to accelerate the sampling of configuration space
in case of high barriers between relevant configurations

several (identical) replicas of the system are simulated
simultaneously, at different temperatures

coordinates+velocities of the replicas may be switched
(exchanged) between two temperatures



Enhancing the sampling

Replica-exchange MD

Probability of replica exchange

probability of exchange between T1 < T2

determined in regular time intervals

instantaneous potential energies U1 and U2

in the two simulations needed

P(1↔ 2) =

{
1 if U2 < U1,

exp
[(

1
kBT1

− 1
kBT2

)
· (U1 − U2)

]
otherwise.

if P(1↔ 2) > random number from (0, 1),
then replicas in simulations at T1 and T2 are exchanged

a flavor of Metropolis’ Monte Carlo
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Replica-exchange MD

Setup of the simulation of replicas

one replica at the temperature of interest (T1 = 300 K)

several others at higher temperatures (T1 < T2 < T3 < . . .)

after 1 ps, attempt exchanges 1↔ 2, 3↔ 4 etc.

after another 1 ps, do the same for 2↔ 3, 4↔ 5 etc.

so, try to exchange replicas at “neighboring” temperatures
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Replica-exchange MD

Setup of the simulation of replicas
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Replica-exchange MD

Advantages of REMD

due to the simulations at high temperatures

faster sampling and more frequent crossing of energy barriers

correct sampling at all temperatures obtained,
above all at the (lowest) temperature of interest

increased computational cost (multiple simulations)
pays off with largely accelerated sampling

simulations running at different temperatures are independent
except at attempted exchanges → easy parallelization

first application – protein folding (Sugita & Okamoto, Chem. Phys. Lett. 1999)
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Replica-exchange MD

Choice of temperatures to simulate

Important – suitable choice of temperatures Ti – criteria:

how frequent exchanges we wish (average prob. P(1↔ 2))

the size of the system (degrees of freedom Ndof)

the number of temperatures/simulations

For protein/water systems with all bond lengths constrained:

Ndof ≈ 2N (N – number of atoms)

average probability is related to T2 − T1 = εT1 as

P(1↔ 2) ≈ exp
[
−2ε2N

]
set of temperatures may be designed to suit the problem
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Replica-exchange MD

REMD generalized

multiple different simulation parameters. . .

different temperatures and different (e.g. biasing) potentials

great flexibility

Simulations 1 and 2 performed

at different temperatures T1 and T2

with different potentials U1 and U2 (umbrella or other)

∆ =
1

kT1

(
U1(q2)− U1(q1)

)
− 1

kT2

(
U2(q1)− U2(q2)

)
P(1↔ 2) =

{
1 if ∆ ≤ 0,

exp [−∆] otherwise.
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Replica-exchange MD

REMD generalized

Barostat

common problem of REMD simulations

our experience – NVT is reliable, NPT is not

box scaling → scaling of atom coordinates necessary
– not (always) performed in the RE protocol

in Gromacs: ‘LINCS’ warnings before crash etc.

P also affected (for REST2: much smaller than in NVT)

conclusion: do NVT
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Replica-exchange MD

Extended sampling methods

Biasing potential methods – US, METAD

required: a priori choice of reaction coordinate(s) to be biased

problem – success depends on that choice, possibly non-trivial

REMD (parallel tempering)

+ no such required, can be used rather blindly

− all of the system heated → may destroy something

− no knowledge of the system may be embedded

− poor efficiency for big systems: P(1↔ 2) ≈ exp
[
−2ε2N

]
→ critical problem
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Replica-exchange MD

Extended sampling methods

Hamiltonian replica exchange (HREX)

in intermediate position between US/METAD and REMD/PT

simpler to use than US/METAD
– results depend not so strongly on the choices to be made

efficiency does not depend on the overall system size

many possibilities; our choice: REST2

REST1: Berne et al., Proc. Natl. Acad. Sci. USA 2005
modif: Ceulemans et al., J. Chem. Theory Comput. 2011
modif: Takada et al., J. Comput. Chem. 2011
REST2: Berne et al., J. Phys. Chem. B 2011

review and Gromacs implementation: Bussi, Mol. Phys. 2014
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Replica-exchange MD

Replica-exchange with solute tempering

P ∝ exp

[
− U

kT

]
= exp [−βU]

note: 1
2U would be the same as 2T

U is combined from terms that we can scale individually
– is not possible for T
– ‘heating’ of a portion of the system
– a group of atoms, or just a group of interaction terms
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Replica-exchange MD

REST2

divide the system into two parts:

hot – small, will be subject to extended sampling

cold – all of the rest

Generate replicas with different λm < 1, modify parameters in hot:

scale the charges by
√
λm

scale the LJ depths ε by λm

scale the amplitudes of dihedrals within hot by λm

scale dihedrals partly within hot by
√
λm

Then, the ‘effective’ temperatures are

inside hot: T/λm > T

interactions between hot and cold: T/
√
λm

inside cold: T is retained
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Then, the ‘effective’ temperatures are
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Enhancing the sampling

Replica-exchange MD

REST2

Meaning of temperature

kinetic energy ← velocities
– does not change, is the same in hot and cold (300 K)
– simulation settings need not be adjusted (time step!)
– unlike in parallel tempering

factor affecting the population of states
– we play with this



Enhancing the sampling

Replica-exchange MD

REST2 – technical

implemented in Gromacs+Plumed

independent topology files may be used – great flexibility

scripts for topology modification available

P computed from the general expression

low overhead – extra computational cost up to 10 %

also possible with Gromacs’ free energy code (slower)
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Solute tempering – dialanine

alanine dipeptide – 22 atoms, 1 pair of ϕ− ψ
Amber99SB + TIP3P

5 replicas, λ = 1 . . . 0.18 i.e. Tm = 300 . . . 1700 K

exchange every 0.1 ps, observed P =0.25–0.50
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REST2 – example

Solute tempering – dialanine – reference result from metadynamics

ϕ− ψ in degrees, ∆F in kcal/mol
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ϕ− ψ in degrees, ∆F in kcal/mol
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Solute tempering – dialanine – replica #2

ϕ− ψ in degrees, ∆F in kcal/mol
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Solute tempering – dialanine – replica #3

ϕ− ψ in degrees, ∆F in kcal/mol
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REST2 – example

Solute tempering – dialanine – replica #4

ϕ− ψ in degrees, ∆F in kcal/mol
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REST2 – example

Solute tempering – dialanine – replica #5

ϕ− ψ in degrees, ∆F in kcal/mol
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REST2 – example

Partial tempering – RNA tetraloop

GC-UUCG-GC

difficult – slow sampling, force field issues – Olomouc FF

stem – WC HB restrained, kept ‘cold’

loop – ‘hot’, 16 replicas, λ = 1 . . . 0.3→ P =0.3–0.5

4600 TIP3P waters, 14 Na+, 7 Cl−



Enhancing the sampling

Replica-exchange MD

REST2 – example

Partial tempering – RNA tetraloop

defficiency of BSC0 manifests quickly: ladder-like structure of stem
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