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May 11, 2016



Simulating thermodynamics ensembles

System, trajectory and ensemble

Intro

system of classical particles interacting with potential V
– deterministic system

given initial conditions (~r0 and ~v0),
trajectory of the system (~r(t) and ~v(t))
is determined for all of the future t →∞

for some systems – analytic solution
e.g. harmonic oscillator:

x(t) = x0 · cos[ωt] v(t) = −v0 · sin[ωt]
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System, trajectory and ensemble

Intro

for a complex system – trajectory is obtained numerically

so-called chaotic systems – strictly deterministic, too

chaos – two trajectories close in phase space initially
will depart exponentially from each other
(solution of the eqns of motion is unstable)
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System, trajectory and ensemble

Intro

stable and unstable solutions of eqns of motion
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System, trajectory and ensemble

Intro

stochastic process – when we do not have sufficient information
about all of the degrees of freedom of the system

then, we have to describe the systems with statistical mechanics

what we need – techniques to control basic simulation parameters
– temperature, possibly pressure etc.

T – determines if a region of phase space shall be reached in MD
phase space – different sampling at high and at low temperatures

– different ensembles will be generated

particularly important – to find a way to model the system,
so that we obtain correct phase space density
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System, trajectory and ensemble

Intro

high E – multiple different regions of the phase space are reached
low E – restricted available region of phase space

difference E − Epot corresponds to Ekin and temperature
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Microcanonical / NVE ensemble

Isolated system

exchanges with surroundings neither energy (heat / work)
nor matter (particles)

total energy of system: E = Ekin + Epot = const

individually, Ekin and Epot fluctuate in the course of time
as they are being transformed into each other

is what we get when using the Verlet method for a molecule

trajectory in the microcanonical ensemble
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Microcanonical / NVE ensemble

Isolated system

kinetic theory of gases → relation of Ekin and temperature:

〈Ekin〉 =
3

2
NkT

where 〈Ekin〉 =
1

2

∑
i

mi

〈
v2
i

〉
so T =

∑
i mi

〈
v2
i

〉
3Nk

‘local’ temperature

fluctuates in time

may differ between different parts of system
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Microcanonical / NVE ensemble

Isolated and closed system

experimental setup (a test tube with a sample)
– usually in thermodynamic equilibrium with the surroundings
– temperature (and optionally pressure) equal as that of surr.

isolated system closed system
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Canonical / NVT ensemble

Closed system

thermal contact of system with surroundings

exchange of energy in the form of heat
until the temperature of surroundings is reached

strictly speaking: T only defined with such thermal contact
(→ N/A in case of isolated system)

trajectory in the canonical ensemble
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Canonical / NVT ensemble

Canonical ensemble

velocity / speed of atoms – Maxwell–Boltzmann distribution

p(vx ,i ) =

√
mi

2πkT
· exp

[
−
miv

2
x ,i

2kT

]

p(vi ) = 4π
( mi

2πkT

)3/2
· v2

i · exp

[
−
miv

2
i

2kT

]
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Canonical / NVT ensemble

Canonical ensemble

velocity / speed of atoms – Maxwell–Boltzmann distribution

(for N2 as IG)
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Canonical / NVT ensemble

Equipartition theorem

(Gleichverteilungssatz) (DoF = degree of freedom)
Every DoF contains the same average amount of kinetic energy of〈

1

2
miv

2
x ,i

〉
=

1

2
kT

Each atom i has 3 DoF xi , yi and zi (and v2
i = v2

x ,i + v2
y ,i + v2

z,i ) →

〈Ekin〉 =

〈∑
i

1

2
miv

2
i

〉
=

〈∑
i

1

2
miv

2
x ,i +

1

2
miv

2
y ,i +

1

2
miv

2
z,i

〉
=

3

2
NkT

Such a distribution of velocity and kinetic energy is a property
of systems in contact with heat bath (not of isolated system)

Attention if constraints are being applied:
– reduced number of DoF 3N −Nc here and in all what follows!
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Canonical / NVT ensemble

Equipartition theorem

Virial theorem:〈∑
k

qk
∂H

∂qk

〉
=

〈∑
k

pk
∂H

∂pk

〉
=

〈∑
k

pk
dqk
dt

〉
= −

〈∑
k

qk
dpk
dt

〉

(DoFs: generalized coordinates qk , generalized momenta pk)

Generalized equipartition theorem – extension of virial theorem:〈
pk
∂H

∂pk

〉
= kT →

〈
1

m
p2
k

〉
=

1

2
kT

〈
qk
∂H

∂qk

〉
= kT → 〈qk · Fk〉 = −kT

→
〈
~ri · ~Fi

〉
= −3kT
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Canonical / NVT ensemble

How can we control the temperature in simulation?
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Canonical / NVT ensemble

Näıve thermostat – scaling of velocities

in a Verlet MD simulation – ‘instantaneous temperature’ T
deviates from the target Tref (of bath = the surroundings)

T (t) =
2

3

Ekin(t)

Nk
6= Tref

T (t) – another name for Ekin determined by velocities
simple idea – scale the velocities by a certain factor λ:

Tref =
1

3
2Nk

· 1

2

∑
i

mi (λ · vi )2 =

= λ2 · 1
3
2Nk

· 1

2

∑
i

miv
2
i = λ2 · T

scaling of all velocities by λ =
√
Tref/T → Tref reached exactly
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Canonical / NVT ensemble

Näıve thermostat – scaling of velocities

very crude way of controlling the temperature

rescaling the velocities affects the ‘natural’ way
of evolution of the system

velocities – not sure if the distribution is correct (M–B)

importantly, system does not sample any canonical ensemble
– phase space density is not that of a canonical ensemble
– very important because everything is calculated as averages:

〈A〉 =
1

Z

∫
ρ · A d~r d~p

possibly: wrong sampling → wrong averages
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Canonical / NVT ensemble

Näıve thermostat – scaling of velocities

How to avoid the drastic changes to the dynamics?
adjust velocities more smoothly, in the direction of Tref ,
resigning on Tref to be recovered in every step immediately



Simulating thermodynamics ensembles

Canonical / NVT ensemble

Berendsen thermostat

system coupled to infinite bath with temperature Tref

temperature changes between two time steps according to

dT

dt
=

1

τ
(Tref − T )

rate of change of T (due to the change of velocities)
is proportional to the deviation of actual T from Tref

constant of proportionality – relaxation time τ
– exponential decay of temperature towards Tref :

∆T =
∆t

τ
(Tref − T )
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Canonical / NVT ensemble

Berendsen thermostat

∆T =
∆t

τ
(Tref − T )

for that, velocities are scaled by λ as above:

Tnew = T + ∆T = T +
∆t

τ
(Tref − T )

λ =

√
Tnew

T
=

√
1 +

∆t

τ

(
Tref

T
− 1

)
usually: τ = 0.1− 10 ps

T is still fluctuating – however around the desired value Tref
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Canonical / NVT ensemble

Berendsen thermostat

fluctuation of temperature – desired property
for canonical ensemble – variance of ‘inst. temperature’ T :

σ2
T =

〈
(T − 〈T 〉)2

〉
=
〈
T 2
〉
− 〈T 〉2

and relative variance

σ2
T

〈T 〉2
=

2

3N

large number of atoms N: fluctuations → 0
finite-sized systems: visible fluctuation of temperature

– feature of the canonical ensemble
– we would not obtain this with the simple velocity scaling
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Canonical / NVT ensemble

Berendsen thermostat

drawbacks:

does not generate correct canonical ensemble

various parts of the system (different individual molecules,
or solute × solvent) may exhibit different temperatures,
while the temperature of the entire system is ‘correct’

– may remain like that for extended periods of time

gradually moves the energy from the fastest modes of motion
to the slowest/weakest ones, violating the equipartition

the fastest – bond stretching and angle bending
loss of energy → ‘freezing’ of the molecules

the slowest – 3 transl’ns (+ 3 rot’ns) of the entire system
energy gain → ‘flying (+ spinning) ice cube’
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Canonical / NVT ensemble

Nosé–Hoover thermostat

conceptionally and mathematically > difficult to understand

heat bath is treated not as an external element
rather as an integral part of the system

the bath – an additional DoF s with fictitious mass Q
may be understood as time-scaling parameter:

dt ′ = s · dt

eqns of motion will be propagated for this extended system,
for which an energy-like quantity will be conserved

generates canonical NVT ensemble of the molecular system
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Canonical / NVT ensemble

Nosé–Hoover thermostat

expression for the energy of the system involves the bath:

Epot = U(r) + g · kTref · log s

g – number of DoF of the system = 3N + 1

Tref – reference temperature

Ekin =
∑
i

1

2
mi s

2ṙ ′2i +
1

2
Qs ′2

attention needed – derivatives w.r.t. the modified time:

dt ′ 6= dt → ṙ ′i 6= ṙi
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Canonical / NVT ensemble

Nosé–Hoover thermostat

eqns of motion for the extended system (3N + 1 DoF)
derived with the Hamiltonian formalism:

H(r ′, ṙ ′, s, ṡ ′) = Epot + Ekin

eqns for the molecular DoF:

dri
dt ′

=
1

mi
· ∂H
∂ ṙ ′i

dṙ ′i
dt ′

= − 1

mi
· ∂H
∂r ′i

eqns for the additional DoF:

ds

dt ′
=

1

Q
· ∂H
∂ṡ ′

dṡ ′

dt ′
= − 1

Q
· ∂H
∂s ′
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Nosé–Hoover thermostat
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Canonical / NVT ensemble

Nosé–Hoover thermostat

we obtain these eqns of motion:

r̈ ′i =
Fi
mi
· 1

s2
− 2ṡ ′

s
· ṙ ′i

black – usual Newtonian eqns of motion
red – bath s integrated into the propagation,

rather than correcting velocities a posteriori

one more eqn of motion – for the bath coordinate s:

s̈ ′ =
1

Qs

(∑
i

mi s
2ṙ2

i − g · kTref

)
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Canonical / NVT ensemble

Nosé–Hoover thermostat

such eqns are impractical because

they work with transformed velocities ṙ ′ and accelerations r̈ ′

time steps are not equally long (∆t ′ = s ·∆t)

to make things clearer, we

return from the modified time scale t ′ to the usual t

transform the eqns to the usual vaiables ṙ , r̈

for the ‘velocity of bath’: pass from ṡ to γ = ṡ
s
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Canonical / NVT ensemble

Nosé–Hoover thermostat

final form of the eqns of motion:

r̈i =
Fi
mi
− γ · ṙi

2nd term: formally – a kind of ‘friction’ (bath)

γ̇ =
1

Q
(T − Tref)

note:
∑

i
1
2mi ṙ

2
i = 3N · 1

2kT
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Canonical / NVT ensemble

Nosé–Hoover thermostat

strength of coupling controlled by Q – more intuitively time τ :

Q =
τ2 · Tref

4π2

– meaning of period of oscillation of the kinetic energy
between the real system and the bath

difference between τ in Berendsen and in Nosé–Hoover:
Berendsen – exponential damping of ∆T with τ
Nosé–Hoover – oscillatory relaxation of T with period τ

thermostat – incorporated in eqns of motion – inseparable part
of the integrator, rather than a posteriori correction

generates canonical phase-space density, used frequently
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Canonical / NVT ensemble

Andersen thermostat

from time to time, some particles (atoms) are selected randomly
to undergo a ‘collision’ with the particles of a heat bath,
which changes their velocities suddenly

this algorithm has a stochastic character:

start MD with a standard integrator (Verlet. . . )

select randomly the atoms that shall be hit by the bath

for these atoms, draw new velocities from Maxwell–Boltzmann
distribution, and keep all of the other atoms untouched
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Canonical / NVT ensemble

Andersen thermostat

advantage: generates canonical ensemble (if implemented right)
– rate of collisions must be neither too low (inefficient) nor
too high (collisions would dominate dynamics over eqns of motion)

disadvantage: no continuity of momentum
– dynamic properties incorrect (diffusion, viscosity. . . )

MD simulations of a molecule / molecular complex in vacuo
– Verlet integrator: no energy flows between modes of motion

– equipartition of energy possibly violated
– Andersen thermostat is a viable solution

(other stochastic algorithms applicable, see further on)
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Canonical / NVT ensemble

Langevin dynamics

a.k.a. stochastic dynamics
additional terms in the eqns of motion:

mi~̈ri = ~Fi −miγ~̇ri +

√
2miγkT

∆t
~Ri (t)

velocity-dependent friction miγ~̇ri (removes energy)
– shall be γ∆t � 1, related to diffusivity: D = kT/mγ
– frictional drag (like, of solvent imposed on a solute)

random force or noise ~Ri (adds energy)
– from a standard normal distribution,

uncorrelated in time and across particles
– thermostat: higher T desired → larger additional force
– random collisions (like, with solvent molecules)

modified eqns of motion → the integrator has to be modified
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– shall be γ∆t � 1, related to diffusivity: D = kT/mγ
– frictional drag (like, of solvent imposed on a solute)

random force or noise ~Ri (adds energy)
– from a standard normal distribution,

uncorrelated in time and across particles
– thermostat: higher T desired → larger additional force
– random collisions (like, with solvent molecules)

modified eqns of motion → the integrator has to be modified
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Brownian dynamics

overdamped Langevin dynamics, or dynamics without inertia
– no acceleration takes place, ~̈ri = ~o:

mi~̈ri = ~Fi −miγ~̇ri +

√
2miγkT

∆t
~Ri (t)

~̇ri =
~Fi
miγ

+

√
2kT

miγ∆t
~Ri (t)

1st order ODE – integration: ~ri (t + ∆t) = ~ri (t) + ~̇ri (t)∆t

over-damped → long time step ∆t possible

very different from explicit all-atom MD simulation

applications: large molecules without explicit solvent
polymers, proteins, nucleic acid molecules, colloid systems
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Controlling temperature

Summary

scaling of velocities (Berendsen, v-rescale)

extended Lagrangian (Nosé–Hoover)

stochastic algorithms (Andersen, Langevin)
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Introducing pressure

Chemical reality – constant pressure rather than constant volume
How to calculate pressure?

From the (generalized) equipartition theorem:

1

3

〈∑
i

~ri~F
tot
i

〉
= −NkT

components of ~F tot
i = ~Fi + ~F ext

i :

– from external effects, ~F ext
i – pressure:

1

3

〈∑
i

~ri~F
ext
i

〉
= −PV

– from interactions between atoms, ~Fi – define virial of force:

Ξ =
1

3

∑
i

~ri · ~Fi



Simulating thermodynamics ensembles

Canonical NPT ensemble

Introducing pressure

Adding the components of forces:

−NkT = −PV + 〈Ξ〉

Consider ‘instantaneous pressure’ P from now on:

−NkT = −PV + Ξ

P =
NkT

V
+

1

V
Ξ =

2

3
Ekin +

1

V
Ξ

Pass to pairwise forces ~Fij between atoms on distances ~rij :

Ξ =
1

3

∑
i

~ri~Fi =
1

3

∑
i<j

~rij~Fij

P =
1

3V

∑
i

mi |~vi |2 +
∑
i<j

~rij~Fij


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Measuring pressure

no mention of the idea of particles colliding with the wall
also, virial pressure fluctuates greatly and may even be negative:

(DNA oligomer in water at Tref = 300 K, Pref = 1.0 bar)
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Controlling pressure

we can calculate the pressure
– so how do we maintain it at a constant value?

barostat – algorithm that is equivalent of a thermostat,
just that it varies volume of the box instead of velocities

the scaling of the volume is usually isotropic,
except for special systems (e.g. membranes)

it shall be semi-isotropic (xy+z) for such geometries

several options are available:
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Berendsen barostat

equivalent to the Berendsen thermostat

molecular system coupled to a ‘force / pressure bath’ – piston

direct rescaling of box lengths and atom coordinates:

µ = 1− β

3

∆t

τ
(Pref − P)

~r
′
i = µ ·~ri

β – compressibility; β = 0.000045 bar−1 for H2O



Simulating thermodynamics ensembles

Canonical NPT ensemble

Parrinello–Rahman barostat

extended-ensemble barostat – much like Nosé–Hoover algo.

eqns of motion contain box lengths b as additional DoFs:

r̈i =
Fi
mi
− ḃ

b
· ṙi

additional eqn of motion for the dimensions of the box:

b̈ =
V

b
·W−1 · (P − Pref)

strength of coupling – due to mass parameter W−1:

W−1 =
4π2

3

β

τ2

1

L

τ – relaxation time (parameter)

Note: these equations have been oversimplified. . .


	System, trajectory and ensemble
	Microcanonical / NVE ensemble
	Canonical / NVT ensemble
	Canonical NPT ensemble

