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Dèja vu – energy
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Dèja vu – forces
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Equations of motion

total energy – Hamilton function (Hamiltonian):

H = T + V =
1
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p2

m
+

1
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kr2

equations of motion in Hamilton’s formalism:

ṙi =
∂H

∂pi
ṗi = −∂H

∂ri

leading to ordinary differential eqn (ODE) of 2nd order

ṙ =
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∂p
=

p

m
→ p = mṙ → ṗ = m · r̈
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∂r
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Verlet – normal form

r(t + ∆t) = 2 · r(t)− r(t −∆t) + r̈(t)∆t2

r(t −∆t)? information equivalent to velocity, so that
initial conditions may be converted:

r(t0 −∆t) = r(t0)− v(t0) ·∆t

velocities – not in there explicitly, but may be obtained:

ṙ(t) = v(t) =
r(t + ∆t)− r(t −∆t)

2 ·∆t



Molecular dynamics simulation

Verlet – alternatives

. . . with improved numerical behavior:

Velocity Verlet

r(t + ∆t) = r(t) + v(t) ·∆t + 1
2a(t) ·∆t2

v(t + ∆t) = v(t) + 1
2

(
a(t) + a(t + ∆t)

)
·∆t

leap-frog

v(t + 1
2∆t) = v(t − 1

2∆t) + a(t) ·∆t

r(t + ∆t) = r(t) + v(t + 1
2∆t) ·∆t
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Constraint dynamics

Constraint dynamics

Dynamics of large flexible (bio) molecules
– complex combination of different motions

High frequency modes of motions – bond stretch / angle bend
– rather uninteresting, no need for exact description

Lower frequency modes – dihedrals and larger
– conformational changes, important, must be treated properly

Time step – directed by the highest-frequency modes involved
Idea – keep the bonds (or, additionally, angles) fixed,

and leave other modes of motion untouched
– introduce constraints
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Constraint dynamics

Constraint dynamics

Constraint

requirement that the system is required to meet

example: a bond has length of d exactly: |~r12|2 = d2

the associated mode of motion does not contain any energy

Restraint

additional energy contribution in the force field

example: using NMR-estimated distance of atoms j and k ,
Vrest = 1

2krest(rjk − rNMR)2

imposes an energy penalty on any deviation,
but still rjk is allowed to deviate from rNMR

the affected mode still contributes 1
2kT to kinetic energy
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Constraint dynamics

Constraint dynamics

Introduce additional forces ~G on atoms,
which keep the bond lengths and optionally angles fixed:

mi~̈ri = ~Fi + ~Gi

Technique:

integrate eqns of motion for one step with ‘normal’ forces ~F ,
but for now without considering ~G

determine the forces ~G required to satisfy constraints

correct the new atom positions
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Constraint dynamics

Constraint dynamics

Example: 3-atomic molecule, bonds 1–2 and 2–3 fixed, angle is free

Eqns of motion:

m1~̈r1 = ~F1 + ~G1

m2~̈r2 = ~F2 + ~G2

m3~̈r3 = ~F3 + ~G3

Constraints to be fulfilled:

χ12 = r212 − d2
12 = 0

χ23 = r223 − d2
23 = 0
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Constraint dynamics

Constraint dynamics

Lagrangian mechanics provides the constraint forces, generally:

~Ga =
1

2
λ12∇aχ12 +

2

3
λ23∇aχ23

with so-far undetermined Lagrange multipliers λ

~G must be directed along bonds and obey Newton’d 3rd law:

~G1 = λ12~r12
~G2 = −λ12~r12 + λ23~r23
~G3 = −λ23~r23
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Constraint dynamics

Constraint dynamics

Modified integrator eqn:

~ri (t + ∆t) = ~r ′i (t + ∆t) + ∆t2/mi · ~Gi

Insert the previously obtained constraint forces

~r1(t + ∆t) = ~r ′1(t + ∆t) + ∆t2/m1 · λ12~r12
~r2(t + ∆t) = ~r ′2(t + ∆t) + ∆t2/m2 · (−λ12~r12 + λ23~r23)

~r3(t + ∆t) = ~r ′3(t + ∆t) + ∆t2/m3 · (−λ23~r23)

Subtract eqns I–II and II–III to obtain the lengths to be fixed
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Constraint dynamics

Constraint dynamics

~r12(t + ∆t) = ~r ′12(t + ∆t) +

+ ∆t2(m−11 + m−12 ) · λ12~r12 −∆t2m−12 · λ23~r23
~r23(t + ∆t) = ~r ′23(t + ∆t)−

− ∆t2m−12 · λ12~r12 + ∆t2(m−12 + m−13 ) · λ23~r23

take square modulus of both sides of eqns (|~r12|2, . . . )

apply constraints, |~r12|2 = d2
12, . . .

obtain a set of quadratic eqns for λ12 and λ23
solve, perhaps in a linearized form and iteratively

obtain the final new coordinates from (previous slide)

~r1(t + ∆t) = ~r ′1(t + ∆t) + ∆t2/m1 · λ12~r12
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Constraint dynamics

SHAKE

Large (bio)molecule – large number of constraints nc
Set of eqns – solution requires inversion of an nc × nc matrix

– possibly time-consuming

SHAKE – an alternative algorithm:

process the constraints one by one

satisfying one constraint may violate another
→ iterative procedure necessary

run until all constraints are met within a preset tolerance

angle constraints – re-formulate as bond constraints (rigid ∆)

Similar algorithms exist for other integrators,
e.g. RATTLE for velocity Verlet, to treat velocities
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Constraint dynamics

LINCS, SETTLE

LINCS – yet another constraint algorithm

resets bond lengths after an unconstrained integration step
non-iterative, no expensive matrix operations
faster and more stable than SHAKE
available for bond constraints and isolated angle constraints

SETTLE – specialized algorithm for rigid triangles – H2O

3 bond constraints for a molecule with 3 atoms
analytical, non-iterative solution of SHAKE+RATTLE
fulfills constraints exactly (→ no tolerance values needed)
faster than SHAKE → useful for molecules in aqueous solution
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Constraint dynamics

Constraint dynamics

Condition

no coupling between the constrained and unconstrained
modes of motion

Usual choices

bonds with hydrogen
– ∆t may be increased from 1 to 2 fs

all bonds

all bonds + all angles
– looks absurd, but may be a good idea for proteins



Molecular dynamics simulation

Restrained dynamics

Restrained molecular dynamics

Additional contributions in the eqn for total (potential) energy

‘penalty’ for deviation from a desired value of a coordinate

generates additional force

still, the coordinate may deviate from the desired value

position restraints, angle restraints, distance restraints, orientation
restraints and dihedral restraints
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Restrained dynamics

Position restraints

distance of an atom from a fixed reference position ~Ri :

Vposres =
1

2
kposres

∣∣∣~ri − ~Ri

∣∣∣2
to restrain e.g. the protein during equilibration

while the solvent is free to move
– prevent any unwanted drastic rearrangements

to restrain the surroundings of a region of interest
whenever there is not enough info on the surroundings

– the region of interest is simulated without restrains
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Restrained dynamics

Flat-bottomed position restraints

no energy penalty up to a certain distance rfb
from the reference position

restraints the atom to a volume rather than to a point

r =
∣∣∣~ri − ~Ri

∣∣∣
Vfb =

{
1
2kfbpr(r − rfb)2 if r > rfb

0 if r < rfb
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Restrained dynamics

Distance restraints

penalty according to the distance between two atoms

often – impose experimental restraints on molecular motion
e.g. from NMR or diffraction experiments

MD – tool for structure refinement using NMR data

optionally time- or ensemble-averaging

r = |~ri −~rj |

Vdr =


1
2kdr(r0 − r)2 if r < r0

0 if r0 < r < r1
1
2kdr(r − r1)2 if r1 < r < r2
1
2kdrr(r2 − r1) + c if r > r2
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Restrained dynamics

Restraints – further ideas

angle restraints – angle between two bonds

dihedral restraints

orientation restraints – angle of two vectors

time averaging for distance restraints
– so that fluctuations are not damped

averaging over multiple pairs of atoms
– due to the nature of NMR data
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