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Molecular structures

L Introduction

Modeling of biomolecules

Potential energy surface: E, = E,(R1,...,Ry)
(coordinates of atoms/nuclei R1,..., Ry)

Approximations:

m Born—-Oppenheimer approximations

m separation of nuclei and electrons
m energy obtained for fixed positions of
nuclei

m Classical description of nuclei

m Motion of nuclei not described with
quantum mechanics

m Application of a force field
m harmonic springs, point-charge
electrostatics. . .
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L Introduction

Energy with a force field
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L Introduction

Limitations of the force field approximation

The parameters have to be determined / fitted

m difficult for certain, or unusual elements (e.g., transition
metals)

Conceptual limitations

m chemical bonds cannot be broken or created
m atom types are pre-determined
m atomic charges are pre-determined and constant
— no change of electron density can be described

Electrons are not described explicitly, so no wave function

m only ground-state energy and forces are available
m no spectroskopic properties (interaction with light)

m no photochemistry (excited states)
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Quantum chemistry vs. force fields

Quantum mechanics:

electronic wave functions: Wo = Wy (ry,...,ry)
(coordinates of electrons rq,...,ry)

solve the electronic Schrédinger equation

ARYARY — E\(Ry, ..., Ry)VIR
Quantum chemistry

m wave function theory (WFT)
m density functional theory (DFT)

— calculation of energy is computationally intensive

Force field methods

m evaluate E, ‘directly’, do not look for the electronic structure

— calculation of energy is very quick and efficient
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L Geometry optimization

Potential energy surface

elektronic energy is a function of coordinates of nuclei {R,}

E=E(Ry,...,Ry)

— electronc energy defines the potential energy surface (PES)

example: a diatomic molecule

— all of the calculations only provide the PES point-wise
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L Geometry optimization

Sampling of the potential energy surface

chemically interesting: stationary points on the PES

— minimum:
stable conformation of a molecule, ‘equilibrium’ structure
— saddle point of 1st order:
transition state (TS),
i.e. point of maximum energy along the direction of a ‘reaction’
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Potential energy surface

Maximum

Maximum

Energy

Minimum

Perpendicular
coordinates  \finimum

Reaction coordinate

®m minimum: every change of structure leads to an increase of

energy
m saddle point: a maximum along reaction coordinate, while

minimum along all other coordinates
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Characterization of stationary points

How shall we find the interesting stationary points?

Example: Minimum of energy of a diatomic molecules

E

NI a

Ty

iy : : E
m condition for a stationary points: 4d = 0

2

m additional condition for a minimum: d2 >0
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L Geometry optimization

Characterization of stationary points

How shall we find the interesting stationary points?
generally: 3M atom coordinates; E = E(R1,...,Ry)

Condition for stationary points:

dE dE dE dE dE)T_O

ent: g=VE=—,—,—, —,...,—
Gradient g v <dX1’dy1’d217dX2, ’dZN

Second derivatives:
d?2E d2E d2E d2E
dx% dxidys dxidz; dxidxo
d2E d2E d2E d2E
dy1dxq dy? dyidzi  dyidxe

Hessian: H =

m Condition for minimum: all eigenvalues of H are positive

m Condition for a saddle point of 1st order: one eigenvalue
of H is negative, all of the others are non-negative
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Characterization of stationary points

How shall we find the interesting stationary points?

m s it possible to sample the PES systematically?
m Example: 10 atoms, 24 (= 3N — 6) coordinates
— 10 points per coordinate — 10%* calculations of energy!
— 100 points per coordinate — 10%4° calculations!
= finding the global minimum — very difficult problem

m chemical intuition — concentrate on meaningful structures

— local minima, transition states between low-energy regions

What do we need now?

m calculation of gradients (and Hessian)

m algorithm
m to optimize the geometry (search for a local minimum)

m to search for transition states



Molecular structures
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Geometry optimization

— search for a local minimum, starting from a suitable structure

m starting structure?

— depending on the chemical
problem

’ guess a starting structure

(obtain wave function)
calculate energy

m convergence criterion? e.g.

5, \1/2
’ calculate gradient ?Sraﬁ%earﬁt end ‘g’ = <IZ g’:a> < t
,Q

gradient is

too large

m how shall we determine the new
structure?

determine a new structure

m Goal: as few steps as possible
(calculation of energy/gradients is expensive)

m calculation of Hessian shall be avoided
(even more expensive)
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L Geometry optimization

Geometry optimization

How to make a step from the current structure towards a
minimum?

Example: geometry optimization of a diatomic molecule
E

A dp

Startpunkt

Gradient

N ‘
— follow the negative of the gradient, i.e.,
Rii1=R;+AR; = R; — ag;

1

— how can be the step length o determined?
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Steepest descents optimization

m Step along the negative of gradient

ARj=oad; dij=—g;

m Choice of the step length a? =
m too short — too many steps needed /}2
m too long — overshoot the minimum X

= "line search’

choose a such that the energy in the ///\ .
direction of the gradient d; = —g; is [ ( e
minimized ’ @ + 4

— calculate the energy at several points S~————
along a line

— the convergence is guaranteed
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Steepest descents optimization

Problems

m too many steps in similar directions needed (problem with

narrow valleys)
=

m convergence is getting slower when close to the minimum
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L Geometry optimization

Conjugate gradient optimization

Solution

m |dea: choose the direction of the step d; such that it is
orthogonal to previous ones

8i 8
di=—g;+8idi_1 5,‘FR:7
8i-1"8i-1
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Newton—Raphson optimization

Taylor expansion of the PES around R;:

E(R)=E(R)+g-(R-R)+3R—R)-Hi-(R—Rj)+--

minimum of this Taylor expansion up to the 2nd order:

dE

:>H,'-(R—R,'):—g-

1

= Newton—Raphson:

calculate the step in direction of the minimum from this Taylor

expansion:
P AR = —H . g,

— for harmonic PES, this leads to the minimum directly

Problem: the calculation of Hessian in every step is expensive
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Quasi-Newton optimization

Apply an approximated Hessian rather than the exact Hessian

m begin e.g. with a unit matrix (— steepest-descents)

m better starting Hessians are available
m e.g. from certain simple rules or from a full calculation

m in every step, use the gradients g;
to improve the approximated Hessian H;

m various update algorithms are possible, e.g. BFGS:
AgiAglt-L Fl,',lAR,',lAR,?_IFI,',l
AgiARi_;  AgiH; AR},

Hi=H_i+

m quasi-Newton algorithm often converges quickly and reliably

— standard method in most quantum chemical packages
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Choice of the coordinate system

= Convergence of a quasi-Newton optimization is the better,
the closer to a quadratic form the PES is
— depends on the choice of coordinate system strongly

Possible choices of coordinate system

m cartesian coordinates
m simple, but not adjusted to a ‘chemical’ problem
— often slow convergence

m internal coordinates
m use bond lengths, angles and torsional angles
— often good convergence
— but the definition of 3M — 6 coordinates difficult

m redundant internal coordinates
m use ‘too many’ internal coordinates
— mostly good convergence
— simple automatized definition is possible

m complexer coordinate systems possible
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Geometry optimization: Summary

m starting point: a chemically meaningful structure
®m minimization procedures:
m steepest descents: converges always, but slowly
m better: conjugate gradients, quasi-Newton (e.g. BFGS)
— all of these avoid the calculation of Hessian

m biomolecules — often very difficult to find true minima

in the quantum chemistry
m calculations mostly limited to a single minimum

m starting point for the calculation of molecular properties
(spectra...)

m with the force field methods
m starting point for MD simulation around a minimum (and

beyond)

m pre-optimization for quantum chemical calculations
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L Vibrational analysis

Potential energy surface

What is going on with the energy of the atomic nuclei?

— PES Ei(R1,..., Ry) is the potential energy of the nuclei

m Is it possible, to calculate the entire potential energy surface?
m Example: 10 atoms, 24 (= 3N — 6) coordinates

— 10 points per coordinate — 10%* calculations of energy!
— 100 points per coordinate — 10%4° calculations!
m only concentrate on the relevant region close to a minimum

Search for a local minimum: geometry optimization
m requires a chemically meaningful starting structure
m calculation of electronic energy and its gradients
in several (few) points of the coordinate space
In the region close to a local minimum

— apply a Taylor expansion to the PES
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Harmonic approximation

m let us move the origin of coordinates into the local minimum
of PES:
R;o = o (null vector)

— the variables {R,} determine the deviation from minimum

m Taylor expansion of energy

M 3
Ea({R1}) = Ea({o})+ D> (885;);?  Ria

——
const. I=1a=1
=0
M 3 3
1 0?E,
- Rig| "5 — R R3
530S Ria (57 ) e R+ OCRE
1,J a=1p=1 ’ P/ Ri=o

— gradients in a local minimum of PES vanish



Molecular structures

L Vibrational analysis

Harmonic approximation

m terminate the Taylor series after the second order

m the 2nd derivatives may be written in a matrix form
Hessian:

O°E,
H = {H;} = {OR,(';/I'\’J} — coupling of coordinates of different nuclei

m condense the atomic masses into the coordinates:

R™ = /MR,

H™  — pm~Y2. .. m1/2

m looking for: a linear combination of mass-weighted coordinates,
which diagonalizes the Hessian — normal coordinates {g;}
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Harmonic approximation

m Normal coordinates {g;}, normal modes {Q()}:

3M >
(i) p(m) 0" Eel L
; I 0q;0q;
Q@ = (@Y., @tM)T Q" = (@ Qi)
HY9 — Q7 .H™.Q v = QT . v

m Eigenvalues of energy of the harmonic oscillator

— the vibrational frequencies w;
follow from the eigenvalues of the Hessian

m for molecules in the gas phase:
translations+rotations are separated from the vibrations
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L Vibrational analysis

Summary: vibrational analysis

m starting point: local minimum on the PES

y_ | OEd
ORiOR;

— the most computationally intensive step

m calculate the Hessian:

m introduce mass weighting:

H™ — pm-Y2. H. M~ 1/2

diagonalize the mass-weighted Hessian:
H@ = QT .HM . Q

m calculate the vibrational frequencies from the eigenvalues:
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Transition states

To describe a chemical reaction, or another process of interest:

m energies and structures of the reactant and the product
— reaction enthalpy AH,

m energy and structure of the transition state — rate of the process

m transition state theory (TST):

Enen
. k="l exp[-AGH /kg T]
“T TS m free energy of the TS:
AG* = AH# — TAS*
s SF m from quantum chemistry:
a6 Perpendicular roduct AH? = Ets — EReactant

Reaction coordinate m entropy contribution AS#:
— from vibrational analysis
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Optimization of transition states

TS search with one-structure methods

m geometry optimization of the reactant and the product

m search for a good starting structure
— e.g. linear transit between the reactant and the product

m works only for simple reaction coordinates
very symmetric systems, e.g. Zundelion H,O...H™ ... OH,

H H|®
\ /
O||||H||||O
/ \

H H
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Optimization of transition states

How to find a suitable starting structure for the TS search?
m should be good — as close as possible to the true TS
m easiest way: follow a (guessed) reaction coordinate
e.g. bond length / angle that is changing during reaction

linear transit: vary this/these coordinate/s in regular steps

in every step, optimize all of the other coordinates
(‘constraint optimization’ with the selected coordinate fixed)

m the maximum of energy along this path should be close to TS

— this will be the starting structure

R

Reaktionspfad
(minimum energy path)
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Optimization of transition states

Alternative: ‘two-structure’ methods

m start from reactant and product; encircle the TS step-by-step

Alternative: ‘multiple-structure’ methods
m start with a linear interpolation between reactant and product
m optimize structuren along the entire reaction path

__Irc

% N X

_."l F\ Relaxed
X3 . *.\ path

R P
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Nudged Elastic Band (NEB)

m Start with linear transit geometries, obtain N systems
m System: coordinates x; and potential V; := V (x;)
m Connection between Systems: Springs %k (Xit1 — x;)2

m Goal: Minimize the energy function TNEB

NEB _ N =1 2
T :Z\/iWLZEk(XiJrI*Xi)
i—1 i—1

/ 74
QA VO AN ANONAAD
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Why Springs Are Dangerous

m Two big problems with the spring constants k:
m k very small: Springs too weak, images slide down to product
and reactand
m k very large: Springs too strong, cutting corners
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How to Nudge an Elastic Band

m Get tangent vector 73 = Xj11 — Xj_1
spring force only parallel to reaction path
potential force only perpendicular

Parallel force from springs:

[Ffpring] = [k (Xiv1 — %) = k (i = xi—1)] X 7

Perpendicular force from the potential energy:
P =YV = VVi= YV x 7
Use known geometry optimizer for TNEB with force

F;cot _ [FiSpring} ” I [Fipot]l
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Summary: transition states

m Optimization of TS is much more difficult
than a normal optimization of an energy minimum

m one-structure methods:

good starting structure and starting Hessian are essential
m multiple-structure methods:

usually more robust, but not always available/applicable
m after the optimization of TS:

always calculate the Hessian to check if it really is a TS!
m in quantum chemistry:

m description of chemical reactions (— activation energy)

m but I: reaction rates require very accurate energies

m but 2: entropy contributions may require MD simulation
m with force field methods:

m chemical reactions impossible, only conformational changes
m then, not clear how meaningful it is to search for TS
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