Molecular structures Minimization, vibrational analysis, transition states

M. Elstner, T. Kubař, C. Jacob, M. Kubillus

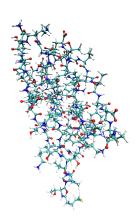
6 July 2016

Modeling of biomolecules

Potential energy surface: $E_{el} = E_{el}(\mathbf{R}_1, ..., \mathbf{R}_N)$ (coordinates of atoms/nuclei $\mathbf{R}_1, ..., \mathbf{R}_N$)

Approximations:

- Born-Oppenheimer approximations
 - separation of nuclei and electrons
 - energy obtained for fixed positions of nuclei
- Classical description of nuclei
 - Motion of nuclei not described with quantum mechanics
- Application of a force field
 - harmonic springs, point-charge electrostatics...



$$E_{\text{el}}(\boldsymbol{R}_{1}, \dots, \boldsymbol{R}_{N}) = \frac{1}{2} \sum_{i}^{\text{bonds}} k_{i}(r_{i} - r_{i}^{0})^{2} + \frac{1}{2} \sum_{i}^{\text{angles}} k_{j}^{\theta} (\theta_{j} - \theta_{j}^{0})^{2}$$

$$+ \frac{1}{2} \sum_{n}^{\text{torsions}} \cos(n_{n}\omega_{n} - \gamma_{n})$$

$$+ \sum_{I} \sum_{J>I} \frac{1}{4\pi\varepsilon_{0}} \frac{q_{I}q_{J}}{|\boldsymbol{R}_{I} - \boldsymbol{R}_{J}|}$$

$$+ \sum_{I} \sum_{J>I} 4\varepsilon_{IJ} \left[\left(\frac{\sigma_{IJ}}{|\boldsymbol{R}_{I} - \boldsymbol{R}_{J}|} \right)^{12} - \left(\frac{\sigma_{IJ}}{|\boldsymbol{R}_{I} - \boldsymbol{R}_{J}|} \right)^{6} \right]$$

Limitations of the force field approximation

The parameters have to be determined / fitted

 difficult for certain, or unusual elements (e.g., transition metals)

Conceptual limitations

- chemical bonds cannot be broken or created
- atom types are pre-determined
- atomic charges are pre-determined and constant
 - no change of electron density can be described

Electrons are not described explicitly, so no wave function

- only ground-state energy and forces are available
- no spectroskopic properties (interaction with light)
- no photochemistry (excited states)

Quantum chemistry vs. force fields

Quantum mechanics:

electronic wave functions: $\Psi_{\rm el} = \Psi_{\rm el}(\boldsymbol{r}_1, \ldots, \boldsymbol{r}_N)$ (coordinates of electrons $\boldsymbol{r}_1, \ldots, \boldsymbol{r}_N$) solve the electronic Schrödinger equation

$$\hat{H}^{\{R\}} \Psi^{\{R\}} = E_{\mathsf{el}}(R_1, \dots, R_N) \Psi^{\{R\}}$$

Quantum chemistry

- wave function theory (WFT)
- density functional theory (DFT)
- → calculation of energy is computationally intensive

Force field methods

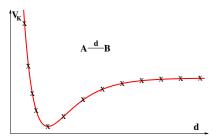
- evaluate E_{el} 'directly', do not look for the electronic structure
- → calculation of energy is very quick and efficient

Potential energy surface

elektronic energy is a function of coordinates of nuclei $\{R_I\}$

$$E = E(\textbf{\textit{R}}_1, \ldots, \textbf{\textit{R}}_N)$$

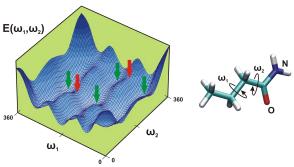
→ electronc energy defines the *potential energy surface (PES)* example: a diatomic molecule



 \rightarrow all of the calculations only provide the PES point-wise

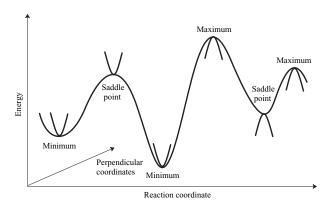
Sampling of the potential energy surface

chemically interesting: stationary points on the PES



- ightarrow minimum: stable conformation of a molecule, 'equilibrium' structure
- → saddle point of 1st order:
 transition state (TS),
 i.e. point of maximum energy along the direction of a 'reaction'

Potential energy surface

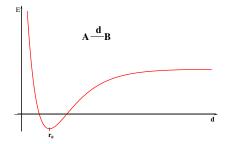


- minimum: every change of structure leads to an increase of energy
- saddle point: a maximum along reaction coordinate, while minimum along all other coordinates

Characterization of stationary points

How shall we find the interesting stationary points?

Example: Minimum of energy of a diatomic molecules



- condition for a stationary points: $\frac{dE}{dd} = 0$
- \blacksquare additional condition for a minimum: $\frac{d^2 E}{d d^2} \geq 0$

Characterization of stationary points

How shall we find the interesting stationary points?

generally: 3M atom coordinates; $E = E(\mathbf{R}_1, \dots, \mathbf{R}_N)$

Condition for stationary points:

Gradient:
$$\mathbf{g} = \nabla E = \left(\frac{dE}{dx_1}, \frac{dE}{dy_1}, \frac{dE}{dz_1}, \frac{dE}{dx_2}, \dots, \frac{dE}{dz_N}\right)^T = 0$$

Second derivatives:

Hessian:
$$\mathbf{H} = \begin{pmatrix} \frac{d^2E}{dx_1^2} & \frac{d^2E}{dx_1dy_1} & \frac{d^2E}{dx_1dz_1} & \frac{d^2E}{dx_1dx_2} & \cdots \\ \frac{d^2E}{dy_1dx_1} & \frac{d^2E}{dy_1^2} & \frac{d^2E}{dy_1dz_1} & \frac{d^2E}{dy_1dz_2} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- Condition for minimum: all eigenvalues of *H* are positive
- Condition for a saddle point of 1st order: one eigenvalue of *H* is negative, all of the others are non-negative

Characterization of stationary points

How shall we find the interesting stationary points?

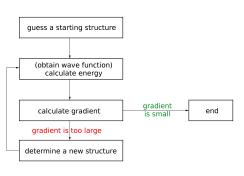
- Is it possible to sample the PES systematically?
 - **Example:** 10 atoms, 24 (= 3N 6) coordinates
 - ightarrow 10 points per coordinate ightarrow 10²⁴ calculations of energy!
 - \rightarrow 100 points per coordinate \rightarrow 10²⁴⁰ calculations!
- ⇒ finding the global minimum very difficult problem
 - chemical intuition concentrate on meaningful structures
- ightarrow local minima, transition states between low-energy regions

What do we need now?

- calculation of gradients (and Hessian)
- algorithm
 - to optimize the geometry (search for a local minimum)
 - to search for transition states

Geometry optimization

 \rightarrow search for a local minimum, starting from a suitable structure



- starting structure?
 - → depending on the chemical problem
- convergence criterion? e.g.

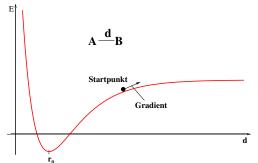
$$|\mathbf{g}| = \left(\sum_{I,\alpha} g_{I,\alpha}^2\right)^{1/2} < t$$

- how shall we determine the new structure?
- Goal: as few steps as possible (calculation of energy/gradients is expensive)
- calculation of Hessian shall be avoided (even more expensive)

Geometry optimization

How to make a step from the current structure towards a minimum?

Example: geometry optimization of a diatomic molecule



 \rightarrow follow the negative of the gradient, i.e.,

$$\mathbf{R}_{i+1} = \mathbf{R}_i + \Delta \mathbf{R}_i = \mathbf{R}_i - \alpha \mathbf{g}_i$$

 \rightarrow how can be the step length α determined?

Steepest descents optimization

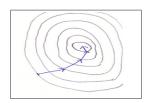
Step along the negative of gradient

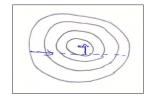
$$\Delta \mathbf{R}_i = \alpha \mathbf{d}_i \qquad \mathbf{d}_i = -\mathbf{g}_i$$

- Choice of the step length α ?
 - $lue{}$ too short ightarrow too many steps needed
 - $lue{}$ too long ightarrow overshoot the minimum
- ⇒ "line search":

choose α such that the energy in the direction of the gradient $\boldsymbol{d}_i = -\boldsymbol{g}_i$ is minimized

- ightarrow calculate the energy at several points along a line
- → the convergence is guaranteed

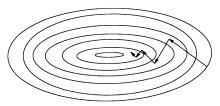




Steepest descents optimization

Problems

too many steps in similar directions needed (problem with narrow valleys)



convergence is getting slower when close to the minimum

Conjugate gradient optimization

Solution

■ Idea: choose the direction of the step d_i such that it is orthogonal to previous ones

$$d_i = -g_i + \beta_i d_{i-1}$$
 $\beta_i^{FR} = \frac{g_i \cdot g_i}{g_{i-1} \cdot g_{i-1}}$

Newton-Raphson optimization

Taylor expansion of the PES around R_i :

$$E(\mathbf{R}) = E(\mathbf{R}_i) + \mathbf{g}_i \cdot (\mathbf{R} - \mathbf{R}_i) + \frac{1}{2}(\mathbf{R} - \mathbf{R}_i)^t \cdot \mathbf{H}_i \cdot (\mathbf{R} - \mathbf{R}_i) + \cdots$$

minimum of this Taylor expansion up to the 2nd order:

$$0 = \frac{dE}{dR} = \mathbf{g}_i + \mathbf{H}_i \cdot (\mathbf{R} - \mathbf{R}_i)$$
$$\Rightarrow \mathbf{H}_i \cdot (\mathbf{R} - \mathbf{R}_i) = -\mathbf{g}_i$$

⇒ Newton–Raphson:

calculate the step in direction of the minimum from this Taylor expansion:

$$\Delta oldsymbol{R}_i = -oldsymbol{H}_i^{-1} \cdot oldsymbol{g}_i$$

→ for harmonic PES, this leads to the minimum directly

Problem: the calculation of Hessian in every step is expensive

Quasi-Newton optimization

Apply an approximated Hessian rather than the exact Hessian

- begin e.g. with a unit matrix (→ steepest-descents)
 - better starting Hessians are available
 - e.g. from certain simple rules or from a full calculation
- in every step, use the gradients \mathbf{g}_i to improve the approximated Hessian $\tilde{\mathbf{H}}_i$
- various update algorithms are possible, e.g. BFGS:

$$\tilde{\boldsymbol{H}}_{i} = \tilde{\boldsymbol{H}}_{i-1} + \frac{\Delta \boldsymbol{g}_{i} \Delta \boldsymbol{g}_{i}^{t}}{\Delta \boldsymbol{g}_{i}^{t} \Delta \boldsymbol{R}_{i-1}^{t}} \frac{\tilde{\boldsymbol{H}}_{i-1} \Delta \boldsymbol{R}_{i-1} \Delta \boldsymbol{R}_{i-1}^{t} \tilde{\boldsymbol{H}}_{i-1}}{\Delta \boldsymbol{g}_{i}^{t} \tilde{\boldsymbol{H}}_{i-1} \Delta \boldsymbol{R}_{i-1}^{t}}$$

- quasi-Newton algorithm often converges quickly and reliably
- ightarrow standard method in most quantum chemical packages

Choice of the coordinate system

- \Rightarrow Convergence of a quasi-Newton optimization is the better, the closer to a quadratic form the PES is
- ightarrow depends on the choice of coordinate system strongly

Possible choices of coordinate system

- cartesian coordinates
 - simple, but not adjusted to a 'chemical' problem
 - → often slow convergence
- internal coordinates
 - use bond lengths, angles and torsional angles
 - ightarrow often good convergence
 - \rightarrow but the definition of 3M-6 coordinates difficult
- redundant internal coordinates
 - use 'too many' internal coordinates
 - → mostly good convergence
 - → simple automatized definition is possible
- complexer coordinate systems possible

Geometry optimization: Summary

- starting point: a chemically meaningful structure
- minimization procedures:
 - steepest descents: converges always, but slowly
 - better: conjugate gradients, quasi-Newton (e.g. BFGS)
 - → all of these avoid the calculation of Hessian
- biomolecules often very difficult to find true minima
- in the quantum chemistry
 - calculations mostly limited to a single minimum
 - starting point for the calculation of molecular properties (spectra...)
- with the force field methods
 - starting point for MD simulation around a minimum (and beyond)
 - pre-optimization for quantum chemical calculations

Potential energy surface

What is going on with the energy of the atomic nuclei?

- \rightarrow PES $E_{\mathrm{el},i}(R_1,\ldots,R_N)$ is the potential energy of the nuclei
 - Is it possible, to calculate the entire potential energy surface?
 - **Example:** 10 atoms, 24 (= 3N 6) coordinates
 - ightarrow 10 points per coordinate ightarrow 10²⁴ calculations of energy!
 - \rightarrow 100 points per coordinate \rightarrow 10²⁴⁰ calculations!
 - only concentrate on the relevant region close to a minimum

Search for a local minimum: geometry optimization

- requires a chemically meaningful starting structure
- calculation of electronic energy and its gradients in several (few) points of the coordinate space

In the region close to a local minimum

→ apply a Taylor expansion to the PES

Harmonic approximation

let us move the origin of coordinates into the local minimum of PES:

$$R_{I,0} = o$$
 (null vector)

- \rightarrow the variables $\{R_I\}$ determine the deviation from minimum
 - Taylor expansion of energy

$$E_{\text{el}}(\{\boldsymbol{R}_{I}\}) = \underbrace{E_{\text{el}}(\{\boldsymbol{o}\})}_{const.} + \underbrace{\sum_{I=1}^{M} \sum_{\alpha=1}^{3} \left(\frac{\partial E_{\text{el}}}{\partial R_{I,\alpha}}\right)_{\boldsymbol{R}_{I}=\boldsymbol{o}}}_{\boldsymbol{R}_{I},\alpha} R_{I,\alpha}$$
$$+ \frac{1}{2} \sum_{I,J}^{M} \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} R_{I,\alpha} \left(\frac{\partial^{2} E_{\text{el}}}{\partial R_{I,\alpha} \partial R_{J,\beta}}\right)_{\boldsymbol{R}_{I}=\boldsymbol{o}} R_{J,\beta} + \mathcal{O}(R_{I,\alpha}^{3})$$

→ gradients in a local minimum of PES vanish

Harmonic approximation

- terminate the Taylor series after the second order
- the 2nd derivatives may be written in a matrix form Hessian:

$$\mathbf{H} = \{H_{ij}\} = \left\{\frac{\partial^2 E_{\mathrm{el}}}{\partial R_i \partial R_j}\right\} \rightarrow \text{coupling of coordinates of different nuclei}$$

condense the atomic masses into the coordinates:

$$R_I^{(m)} = \sqrt{M_I} R_I$$

 $H^{(m)} = M^{-1/2} \cdot H \cdot M^{-1/2}$

■ looking for: a linear combination of mass-weighted coordinates, which diagonalizes the Hessian \rightarrow normal coordinates $\{q_i\}$

Harmonic approximation

■ Normal coordinates $\{q_i\}$, normal modes $\{Q^{(i)}\}$:

$$q_{i} = \sum_{j=1}^{3M} Q_{j}^{(i)} R_{j}^{(m)} \qquad \frac{\partial^{2} E_{el}}{\partial q_{i} \partial q_{j}} = 0 \quad \forall \quad i \neq j$$

$$Q = (Q^{(1)}, \dots, Q^{(3M)})^{T} \qquad Q^{(i)} = (Q_{1,x}^{(i)}, \dots, Q_{3M,z}^{(i)})$$

$$H^{(q)} = Q^{T} \cdot H^{(m)} \cdot Q \qquad \nabla^{(q)} = Q^{T} \cdot \nabla^{(m)}$$

- Eigenvalues of energy of the harmonic oscillator
 - \rightarrow the vibrational frequencies ω_i follow from the eigenvalues of the Hessian

$$\omega_i = \sqrt{H_{ii}^{(q)}}$$

for molecules in the gas phase: translations+rotations are separated from the vibrations

Summary: vibrational analysis

- starting point: local minimum on the PES
- calculate the Hessian:

$$\mathbf{H} = \left\{ \frac{\partial^2 E_{\mathsf{el}}}{\partial R_i \partial R_j} \right\}$$

- ightarrow the most computationally intensive step
- introduce mass weighting:

$$\mathbf{H}^{(m)} = \mathbf{M}^{-1/2} \cdot \mathbf{H} \cdot \mathbf{M}^{-1/2}$$

diagonalize the mass-weighted Hessian:

$$\mathbf{H}^{(q)} = \mathbf{Q}^{\mathsf{T}} \cdot \mathbf{H}^{(m)} \cdot \mathbf{Q}$$

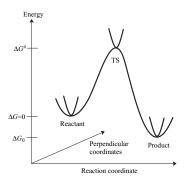
calculate the vibrational frequencies from the eigenvalues:

$$\omega_i = \sqrt{H_{ii}^{(q)}}$$

Transition states

To describe a chemical reaction, or another process of interest:

- lacktriangleright energies and structures of the reactant and the product ightarrow reaction enthalpy ΔH_r
- lacktriangle energy and structure of the transition state ightarrow rate of the process



transition state theory (TST):

$$k = \frac{k_{\mathrm{B}}T}{h} \cdot \exp[-\Delta G^{\#}/k_{\mathrm{B}}T]$$

free energy of the TS:

$$\Delta G^{\#} = \Delta H^{\#} - T\Delta S^{\#}$$

• from quantum chemistry:

$$\Delta H^{\#} = E_{\mathsf{TS}} - E_{\mathsf{Reactant}}$$

- entropy contribution $\Delta S^{\#}$:
 - \rightarrow from vibrational analysis

Optimization of transition states

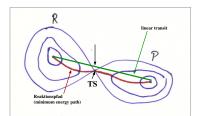
TS search with one-structure methods

- geometry optimization of the reactant and the product
- search for a good starting structure
 - e.g. linear transit between the reactant and the product
- works only for simple reaction coordinates
 very symmetric systems, e.g. Zundelion H₂O...H⁺...OH₂

Optimization of transition states

How to find a suitable starting structure for the TS search?

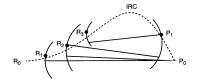
- should be good as close as possible to the true TS
- easiest way: follow a (guessed) reaction coordinatee.g. bond length / angle that is changing during reaction
- linear transit: vary this/these coordinate/s in regular steps
- in every step, optimize all of the other coordinates ('constraint optimization' with the selected coordinate fixed)
- the maximum of energy along this path should be close to TS
 this will be the storting attracture
 - this will be the starting structure



Optimization of transition states

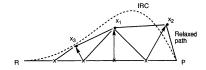
Alternative: 'two-structure' methods

start from reactant and product; encircle the TS step-by-step



Alternative: 'multiple-structure' methods

- start with a linear interpolation between reactant and product
- optimize structuren along the entire reaction path



Nudged Elastic Band (NEB)

- Start with linear transit geometries, obtain N systems
- System: coordinates x_i and potential $V_i := V(x_i)$
- Connection between Systems: Springs $\frac{1}{2}k(\mathbf{x_{i+1}} \mathbf{x_i})^2$
- Goal: Minimize the energy function $T^{\rm NEB}$

$$T^{\text{NEB}} = \sum_{i=1}^{N} V_i + \sum_{i=1}^{N-1} \frac{1}{2} k (\mathbf{x_{i+1}} - \mathbf{x_i})^2$$

Why Springs Are Dangerous

- Two big problems with the spring constants k:
 - k very small: Springs too weak, images slide down to product and reactand
 - *k* very large: Springs too strong, *cutting corners*

How to Nudge an Elastic Band

• Get tangent vector $\tau_i = x_{i+1} - x_{i-1}$ spring force only parallel to reaction path potential force only perpendicular

Parallel force from springs:

$$\left[\mathsf{F}_{\mathsf{i}}^{\mathrm{Spring}}\right]_{\parallel} = \left[k\left(\mathsf{x}_{\mathsf{i}+1} - \mathsf{x}_{\mathsf{i}}\right) - k\left(\mathsf{x}_{\mathsf{i}} - \mathsf{x}_{\mathsf{i}-1}\right)\right] \times \tau$$

Perpendicular force from the potential energy:

$$\left[\mathsf{F}_{\mathsf{i}}^{\mathrm{pot}}\right]_{\perp} = \left[\nabla V_{i}\right]_{\perp} = \nabla V_{i} - \nabla V_{i} \times au_{i}$$

Use known geometry optimizer for $\mathcal{T}^{\mathrm{NEB}}$ with force

$$\textbf{F}_{\textbf{i}}^{\mathrm{tot}} = \left[\textbf{F}_{\textbf{i}}^{\mathrm{Spring}}\right]_{\parallel} + \left[\textbf{F}_{\textbf{i}}^{\mathrm{pot}}\right]_{\perp}.$$

Summary: transition states

- Optimization of TS is much more difficult than a normal optimization of an energy minimum
- one-structure methods: good starting structure and starting Hessian are essential
- multiple-structure methods: usually more robust, but not always available/applicable
- after the optimization of TS: always calculate the Hessian to check if it really is a TS!
- in quantum chemistry:
 - $lue{}$ description of chemical reactions (ightarrow activation energy)
 - but 1: reaction rates require very accurate energies
 - but 2: entropy contributions may require MD simulation
- with force field methods:
 - chemical reactions impossible, only conformational changes
 - then, not clear how meaningful it is to search for TS