Preparing an MD simulation

the procedures - briefly

Marcus Elstner and Tomáš Kubař

June 1, 2016

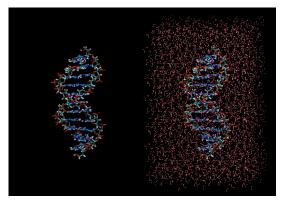
Marcus Elstner and Tomáš Kubař Preparing an MD simulation

- build the initial structure
- 2 bring the system into thermodynamic equilibrium
- operform the productive simulation
- analyze the trajectory

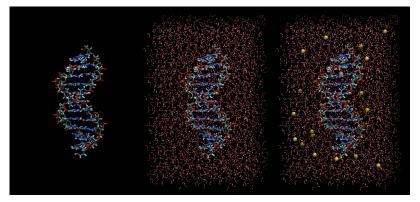
- ${\scriptstyle \bullet}$ do it yourself
- specific programs within simulation packages
- 'universal' visualization programs VMD, Molden, Pymol

- do it yourself
- specific programs within simulation packages
- 'universal' visualization programs VMD, Molden, Pymol
- databases of biomolecular systems PDB, NDB

- do it yourself
- specific programs within simulation packages
- 'universal' visualization programs VMD, Molden, Pymol
- databases of biomolecular systems PDB, NDB
- specialized web services Make-NA


- do it yourself
- specific programs within simulation packages
- 'universal' visualization programs VMD, Molden, Pymol
- databases of biomolecular systems PDB, NDB
- specialized web services Make-NA
- tools to create periodic box and hydrate system

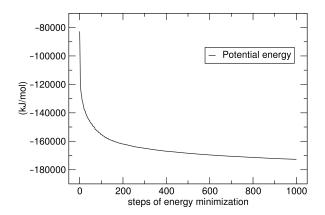
build the solute, solvate it and add counterions



Tools to build the structure

build the solute, solvate it and add counterions

build the solute, solvate it and add counterions

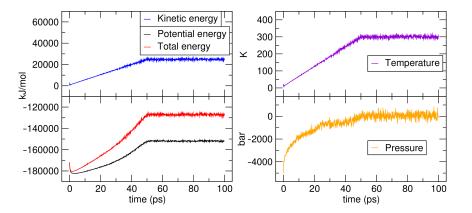

- the initial structure may have high potential energy dangerous – remove 'close contacts'
- often, static structure available velocities missing
- often, structure resolved at different conditions (xtal)
- structure of solvent artificially regular entropy wrong

short optimization of structure – remove 'bad contacts'

Short optimization

integrator nsteps	= =	steep 1000		
pbc nstlist	=	xyz 10		undete neinligt
;	-	10	,	update pairlist
coulombtype	=	PME		
vdwtype	=	Cut-off		
rlist	=	1.0	;	nm
rvdw	=	1.0	;	nm: cut-off for vdw
rcoulomb	=	1.0	;	nm
;				
constraints	=	hbonds		

æ



- short optimization of structure remove 'bad contacts'
- assignment of velocities randomly, at some (low) T
- thermalization heating the system up to the desired T, possibly gradually, with a thermostat NVT simulation

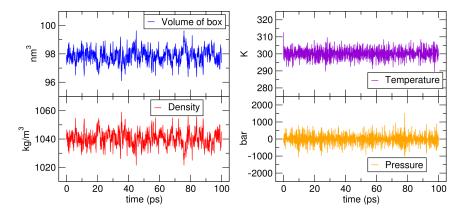
Thermalization

integrator	=	md	
pbc	=	xyz	
dt	=	0.002 ;	ps
nsteps	=	50000	-
nstlist	=	10 ;	update pairlist
coulombtype	=	PME	
vdwtype	=	Cut-off	
rlist	=	1.0 ;	nm
rvdw	=	1.0 ;	; nm
rcoulomb	=	1.0 ;	nm
;			
gen_vel	=	yes	
gen_temp	=	10. ;	K
constraints	=	hbonds	
;			
tcoupl	=	nose-hoov	ver
tc_grps	=	System	
tau_t	=	0.5 ;	; ps
ref_t	=	300. ;	; K
;			
annealing	=	single	
annealing_npoints	=	3	
annealing_time		0. 50.	100. ; ps
annealing_temp	=	10. 300.	300. ; K < □ ▶ < ♂ ▶
N.4	EL.		(Kalax) Desident MD desident

æ

last 40 ps: $T = 300 \pm 7$ K, $p = 64 \pm 266$ bar

- short optimization of structure remove 'bad contacts'
- assignment of velocities randomly, at some (low) T
- thermalization heating the system up to the desired T, possibly gradually, with a thermostat NVT simulation
- simulation with the same setup as the production
 probably NPT, with appropriate thermostat and barostat


Equilibration

integrator	=	md			
pbc	=	xyz			
dt	=	0.002			
nsteps	=	50000			
nstlist	=	10	;	update	pairlist
coulombtype	=	PME			
vdwtype	=	Cut-off			
rlist	=	1.0	;	nm	
rvdw	=	1.0	;	nm	
rcoulomb	=	1.0	;	nm	
;					
gen_vel	=	no			
constraints	=	hbonds			
;					
tcoupl	=	nose-hoover			
tc_grps	=	System			
tau_t	=	0.5	;	ps	
ref_t	=	300.	;	K	
;					
pcoupl	=	parrinello-rahman			
tau_p	=	0.5	;	ps	
ref_p	=	1.0	;	bar	
compressibility	=	4.5e-5	;	1/bar	

æ

Э

▲ 母 ▶ ▲ 臣

last 40 ps: $T = 300 \pm 3$ K, $p = -11 \pm 331$ bar

Productive simulation – easy © Analysis of the trajectory – let us see...