Preparing an MD simulation the procedures – briefly

Marcus Elstner and Tomáš Kubař

May 22, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Work plan

- 1 build the initial structure
- 2 bring the system into thermodynamic equilibrium

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 3 perform the productive simulation
- 4 analyze the trajectory

Tools to build the structure

- do it yourself
- specific programs within simulation packages
- 'universal' visualization programs VMD, Molden, Pymol

Tools to build the structure

- do it yourself
- specific programs within simulation packages
- 'universal' visualization programs VMD, Molden, Pymol

databases of biomolecular systems – PDB, NDB

Tools to build the structure

- do it yourself
- specific programs within simulation packages
- 'universal' visualization programs VMD, Molden, Pymol

- databases of biomolecular systems PDB, NDB
- specialized web services Make-NA

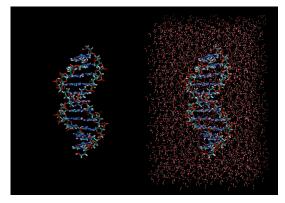
Tools to build the structure

- do it yourself
- specific programs within simulation packages
- 'universal' visualization programs VMD, Molden, Pymol

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

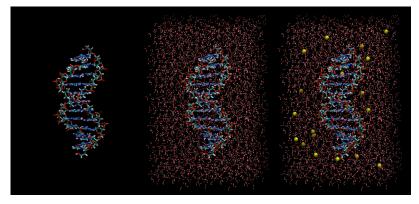
- databases of biomolecular systems PDB, NDB
- specialized web services Make-NA
- tools to create periodic box and hydrate system

Tools to build the structure


build the solute, solvate it and add counterions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Tools to build the structure


build the solute, solvate it and add counterions

・ロト ・聞ト ・ヨト ・ヨト

Tools to build the structure

build the solute, solvate it and add counterions

Why equilibrate?

- the initial structure may have high potential energy dangerous – remove 'close contacts'
- often, static structure available velocities missing
- often, structure resolved at different conditions (xtal)
- structure of solvent artificially regular entropy wrong

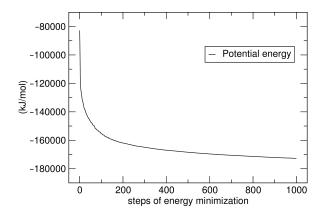
How to equilibrate

1 short optimization of structure - remove 'bad contacts'

How to equilibrate

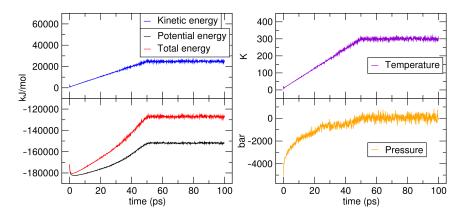
short optimization of structure – remove 'bad contacts'

2 assignment of velocities – randomly, at some (low) T

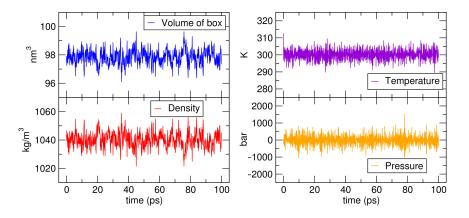

How to equilibrate

- short optimization of structure remove 'bad contacts'
- 2 assignment of velocities randomly, at some (low) T
- 3 thermalization heating the system up to the desired T, possibly gradually, with a thermostat NVT simulation

How to equilibrate


- short optimization of structure remove 'bad contacts'
- 2 assignment of velocities randomly, at some (low) T
- 3 thermalization heating the system up to the desired T, possibly gradually, with a thermostat NVT simulation
- 4 simulation with the same setup as the production
 probably NPT, with appropriate thermostat and barostat

Short optimization


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Thermalization

last 40 ps: $T = 300 \pm 7$ K, $p = 64 \pm 266$ bar

Equilibration

last 40 ps: $T=300\pm3$ K, $p=-11\pm331$ bar

What comes then?

Productive simulation – easy © Analysis of the trajectory – let us see...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?