Biomolecular modeling

Marcus Elstner and Tomáš Kubař

2019/2020

Marcus Elstner and Tomáš Kubař Biomolecular modeling

Exam topics

Total energy with molecular mechanics

- bonded and non-bonded interactions
- contributions to the energy
- parameters and variables in the energy contributions
- relation of force and energy
- Ø Molecular dynamics simulation
 - equations of motion
 - their numerical solution
 - initial conditions
 - Verlet method
 - time step
 - conservation of energy

③ Temperature and MD simulation

- relation of temperature
- kinetic energy and velocities
- scaling of velocities to control temperature
- Berendsen thermostat
- Setup of molecular system to be simulated
 - periodic boundary conditions
 - shape of the box
 - MM models of water
 - treatment of non-bonded interactions (cut-off, Ewald method)

- Analysis of simulation
 - average structure
 - RMSD
 - RMSF
 - radial distribution function
- Oarse-grained simulations
 - in the extent of the slide deck from the class
- Inhanced sampling methods
 - statement of the problem
 - metadynamics
 - principle
 - application of additional energy contribution
 - need of a collective variable
 - free energy as function of CV