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how to get things moving
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Equations of motion

m · ~̈r = ~F

ordinary differential equations of second order

have to be solved numerically

solution proceeds in discreet steps of length ∆t

numerical integration starts at time t0,
where the initial conditions are specified
– the positions ~r0 and the velocities ~v0

calculations of forces at ~r0 to get accelerations ~̈r0

then, an integrator calculates ~r and ~v at time t0 + ∆t

accelerations → step → accelerations → step → . . .
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Verlet integration method

for the development of the method:
take a virtual step in positive time and in ‘negative’ time,
and apply Taylor expansion up to second order:

r(t + ∆t) = r(t) + ṙ(t) ·∆t + 1
2 r̈(t) ·∆t2

r(t −∆t) = r(t)− ṙ(t) ·∆t + 1
2 r̈(t) ·∆t2

add both equations – eliminate the velocity ṙ :

r(t + ∆t) = 2 · r(t)− r(t −∆t) + r̈(t)∆t2

r̈(t) = a(t) =
F (t)

m
= − 1

m

∂V

∂r
(t)
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Verlet integration method

another, equivalent formulation – velocity Verlet

r(t + ∆t) = r(t) + v(t) ·∆t + 1
2a(t) ·∆t2

v(t + ∆t) = v(t) + 1
2 (a(t) + a(t + ∆t)) ·∆t

yet another – Leap-frog

v(t + 1
2 ∆t) = v(t − 1

2 ∆t) + a(t) ·∆t

r(t + ∆t) = r(t) + v(t + 1
2 ∆t) ·∆t

both: better numerical precision than Verlet normal form
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∆t – crucial parameter

Let us say: we want to obtain a trajectory over a time interval T
– we perform M steps
– we have to evaluate the forces on atoms M = T/∆t times

Computational cost of the calculation of forces
– major computational effort
– determines how many steps we can afford to make
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∆t – crucial parameter

we neglect contributions in ∆t3 and higher orders
→ error per step in the order of ∆t3

keep the step short → make the error small
but need too many steps to simulate certain time T

make the step long → cut computational cost
but increase the error and decrease stability

compromise needed
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∆t – crucial parameter

fastest motion – hydrogen atoms, period around 10 fs

rule of thumb – stable integration with ∆t ≤ 1
10 fastest period

practically, ∆t of 1 fs is used,
increase to 2 fs possible with a special treatment of bonds

1M calculations of forces needed for a trajectory of 1 ns

large systems – multi-ns simulations routinely, µs possible
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Total energy with a force field

V (RN) =

=
1

2

∑
i

ki (ri − r0
i )2 +

1

2

∑
j

kϑj (ϑj − ϑ0
j )2 +

1

2

∑
n

Vn · cos [nω − γn]

+
N∑
i

N∑
j=i+1

{
4εij

((
σij
rij

)12

−
(
σij
rij

)6
)

+
1

4πε0

qiqj
rij

}

and get forces as derivatives with respect to atomic coordinates:

F x
i = −∂V

∂xi
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Verlet integration method

r(t + ∆t) = 2 · r(t)− r(t −∆t) + r̈(t)∆t2

r̈(t) = a(t) =
F (t)

m
= − 1

m

∂V

∂r
(t)

and choose an appropriate time step ∆t
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Temperature and pressure

what you simulate is what you would measure
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Energies and temperature

Solution of equations of motion – conserves total / internal energy
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Energies and temperature

Solution of equations of motion – conserves total / internal energy

what we need – to control basic simulation parameters
– temperature and possibly pressure

significance of temperature
– determines which structures of the system are accessible
– different dynamics at high and at low temperatures
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Energies and temperature

high E – multiple different structural ‘classes’ are reached
low E – restricted available structures

difference E − Epot corresponds to Ekin and temperature
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Isolated system

exchanges with surroundings neither energy (heat / work)
nor matter (particles)

total energy of system: E = Ekin + Epot = const

individually, Ekin and Epot fluctuate in the course of time
as they are being transformed into each other

is what we get when using the Verlet method for a molecule
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Isolated system

kinetic theory of gases → relation of Ekin and temperature:

〈Ekin〉 =
3

2
NkT

where 〈Ekin〉 =
1

2

∑
i

mi

〈
v2
i

〉
‘local’ T – fluctuates in time; may differ between parts of system
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Isolated and closed system

experimental setup (a test tube with a sample)
– usually in thermodynamic equilibrium with the surroundings
– temperature of system = temperature of suroundings

isolated system closed system

Marcus Elstner and Tomáš Kubǎr Biomolecular modeling II



Molecular dynamics simulation
Temperature and pressure

System boundary and the solvent

Closed system

thermal contact of system with surroundings

exchange of energy in the form of heat
until the temperature of surroundings is reached

canonical ensemble

velocity / speed of atoms – Maxwell–Boltzmann distribution
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Canonical ensemble

Maxwell–Boltzmann distribution of velocity / speed (N2, IG)
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Idea for constant temperature – scale the velocities

‘instantaneous temp.’ T in a simulation deviates from target Tref :

T (t) =
2

3

Ekin(t)

NkB
6= Tref Ekin(t) =

1

2

∑
i

mi · vi (t)2

how to control T? scale the velocities by a certain factor λ,
so that temperature is modified and Tref is reached:

Tref =
1

3
2NkB

· 1

2

∑
i

mi (λ · vi )2 = λ2 · 1
3
2NkB

· 1

2

∑
i

miv
2
i = λ2 · T

thus: scale all velocities by λ =
√
Tref/T → Tref reached exactly

Problem: rescaling of velocities affects the ‘natural’ dynamics
of the molecular system too strongly → unstable simulation
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Berendsen thermostat

How to avoid the drastic changes to the dynamics?
adjust velocities more smoothly, in the direction of Tref

temperature changes between two time steps according to

∆T =
∆t

τ
(Tref − T )

rate of change of T (due to the change of velocities)
is proportional to the deviation of actual T from Tref

constant of proportionality – relaxation time τ
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Berendsen thermostat

velocities are scaled by λ:

Tnew = T + ∆T = T +
∆t

τ
(Tref − T )

λ =

√
Tnew

T
=

√
1 +

∆t

τ

(
Tref

T
− 1

)
usually: τ = 0.1− 10 ps

T will fluctuate around the desired value Tref
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Berendsen thermostat

Question – is the statistical thermodynamics correct?

in other words – is distribution of velocities correct (M–B)?

it is important to make sure that canonical ensemble
is sampled because every thermodynamic quantity A
is obtained as an ensemble average:

〈A〉 =
1

Z

∫
ρ(~r ) · A(~r ) d~r

if sampling is wrong → wrong density ρ → wrong averages

answer: it is not correct – may even lead to problems like . . .
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Berendsen thermostat
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Nosé–Hoover thermostat

generates the correct canonical ensemble → good choice

conceptionally and mathematically > difficult to understand

heat bath is treated not as an external element
rather as an integral part of the system;
is assigned an additional degree of freedom

s with fictitious mass Q

eqns of motion for this extended system (3N + 1 DOF):

r̈i =
Fi
mi
− s · ṙi

ṡ =
1

Q
(T − Tref)
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Introducing pressure

chemical reality – constant pressure rather than constant volume
goal – implement such conditions in simulations, too

How to calculate pressure?
– first, calculate virial of force

Ξ = −1

2

∑
i<j

~rij · ~Fij

(~rij distance of atoms i and j , ~Fij – force between them)

P =
2

3V
· (Ekin − Ξ) =

2

3V
·

1

2

∑
i

mi · |~vi |2 +
1

2

∑
i<j

~rij · ~Fij


Marcus Elstner and Tomáš Kubǎr Biomolecular modeling II



Molecular dynamics simulation
Temperature and pressure

System boundary and the solvent

Measuring pressure

T and P in an NPT simulation of a DNA oligomer in water
(Tref = 300 K, Pref = 1.0 bar)
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Controlling pressure

we can calculate the pressure
– so how do we maintain it at a desired value?

barostat – algorithm that is equivalent of a thermostat,
just that it varies volume of the box instead of velocities

alternatives are available:

Berendsen barostat
– direct rescaling of box volume
– system coupled to a ‘force / pressure bath’ – piston

Parrinello–Rahman barostat
– extended-ensemble simulation
– additional DOF for the piston
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System boundary and the solvent
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Biomolecule in solution

typical MD simulations – molecular system in aqueous solution
preferably – make the system as small as possible (reduce cost)

straightforward solution – single molecule of solute (protein, DNA)
with a smallest possible number of H2O molecules

typical – several thousand H2O molecules in a box n × n × n nm

issue – everything is close to the surface,
while we are interested in a molecule in bulk solvent
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Periodic boundary conditions

elegant way to avoid these problems

molecular system placed in a regular-shaped box

the box is virtually replicated in all spatial directions
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Periodic boundary conditions

elegant way to avoid these problems

molecular system placed in a regular-shaped box

the box is virtually replicated in all spatial directions

positions (and velocities) of all particles are identical in all
replicas, so that we can keep only one copy in the memory

this way, the system is infinite – no surface!

the atoms near the wall of the simulation cell interact with
the atoms in the neighboring replica
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Periodic boundary conditions
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PBC – features

only coordinates of the unit cell are kept in memory

atom that leaves the box enters it on the other side

carefull accounting of the interactions of atoms necessary!
simplest way – minimum image convention:

an atom interacts with the nearest copy of every other
– interaction with two different images of another atom,

or even with another image of itself is avoided
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PBC – box shape

may be simple – cubic or orthorhombic, parallelepiped
(specially, rhombohedron), or hexagonal prism
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PBC – box shape

. . . but also more complicated
– truncated octahedral or rhombic dodecahedral
– quite complex equations for interactions & eqns of motion

advantage for simulation of spherical objects (globular proteins)
– no corners far from the molecule filled with unnecessary H2O
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PBC – box shape

2D objects – phase interfaces, membrane systems
– usually treated in a slab geometry
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Water in biomolecular simulations

most simulations – something in aqueous solutions
H2O – usually (many) thousands of molecules
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Water in biomolecular simulations

most simulations – something in aqueous solutions
H2O – usually (many) thousands of molecules

example – simulation of DNA decanucleotide:

PBC box 3.9× 4.1× 5.6 nm (smallest meaningful)

630 atoms in DNA, 8346 atoms in water and 18 Na+

concentration of DNA: 18 mmol/L – very high!

of all pair interactions: 86 % are water–water,
most of the others involve water
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Water models

most interactions involve H2O
→ necessary to pay attention to its description

model of water must be simple enough (computational cost)
and accurate enough, at the same time

water models – usually rigid
– bond lengths and angles do not vary – constraints

molecule with three sites (atoms in this case), or up to six sites
– three atoms and virtual sites corresponding

to a ‘center’ of electron density or lone electron pairs
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Water models

TIP3P (or SPC)

most frequently used

3 atoms with 3 rigid bonds, charge on every atom
(−0.834/+0.417)

only the O atom has non-zero LJ parameters (optimization)

TIP4P

negative charge placed on virtual site M rather than on the O

electric field around the molecule described better

TIP5P

2 virtual sites L with negative charges near the O – lone pairs

better description of directionality of H-bonding etc.
(radial distribution function, temperature of highest density)
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