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Non-bonded interactions

speeding up the number-crunching
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Non-bonded interactions – why care?
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key to understand biomolecular structure and function
– binding of a ligand
– efficiency of a reaction
– color of a chromophore

two-body potentials → computational effort of O(N2)
– good target of optimization
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Cut-off – simple idea

with PBC – infinite number of interaction pairs in principle,
but the interaction gets weaker with distance

simplest and crudest approach to limit the number of calculations
neglect interaction of atoms further apart than rc – cut-off

very good for rapidly decaying LJ interaction (1/r6) (rc = 10 Å)

not so good for slowly decaying electrostatics (1/r)
– sudden jump (discontinuity) of potential energy,

disaster for forces at the cut-off distance
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Cut-off – better alternatives
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Neighbor lists

cut-off – we still have to calculate the distance for every two atoms
(to compare it with the cut-off distance)
→ we do not win much yet – there are still O(N2) distances

observation: pick an atom A.
the atoms that are within cut-off distance rc around A,

remain within rc for several consecutive steps of dynamics,
while no other atoms approach A that close

idea: maybe it is only necessary to calculate the interactions
between A and these close atoms – neighbors
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Neighbor lists
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Neighbor lists

what will we do?
calculate the distances for every pair of atoms
less frequently, i.e. every 10 or 20 steps of dynamics, and
record the atoms within cut-off distance in a neighbor list

then – calculate the interaction for each atom
only with for the atoms in the neighbor list – formally O(N)
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Accounting of all of the replicas

cut-off – often bad, e.g. with highly charged systems
(DNA, some proteins)

switching function – deforms the forces (slightly)
→ e.g. artificial accumulation of ions around cut-off

only way – abandon the minimum image convention and cut-off
– sum up the long-range Coulomb interaction

between all the replicas of the simulation cell
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Accounting of all of the replicas

the infinite system is periodic – a trick may be applied:

Ewald summation method O(N
3
2 ) or even

particle–mesh Ewald method PME, O(N · logN)

2 main contributions:

‘real-space’ – similar to the usual Coulomb law,
but decreasing much quicker with distance

‘reciprocal-space’ – here are the tricks concentrated
– atom charges artificially smeared (Gaussian densities)
– Fourier transformation can sum up the interaction

of all of the periodic images!

Ewald – realistic simulations of highly charged systems possible
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Preparing an MD simulation

the procedures – briefly
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Work plan

1 build the initial structure

2 bring the system into equilibrium

3 do the productive simulation

4 analyze the trajectory
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Tools to build the structure

do it yourself

specific programs within simulation packages

‘universal’ visualization programs – VMD, Molden, Pymol

databases of biomolecular systems – PDB, NDB

specialized web services – Make-NA

tools to create periodic box and hydrate system
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Tools to build the structure

build the solute, solvate it and add counterions
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Why equilibrate?

the initial structure may have high potential energy
– dangerous – remove ‘close contacts’

often, static structure available – velocities missing

often, structure resolved at different conditions (xtal)

structure of solvent artificially regular – entropy wrong
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How to equilibrate

1 short optimization of structure – remove ‘bad contacts’

2 assignment of velocities – randomly, at some (low) T

3 thermalization – heating the system up to the desired T ,
possibly gradually, with a thermostat – NVT simulation

4 simulation with the same setup as the production
– probably NPT, with correct thermostat and barostat
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Short optimization
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Thermalization

last 40 ps: T = 300± 7 K, p = 64± 266 bar
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Equilibration

last 40 ps: T = 300± 3 K, p = −11± 331 bar
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What comes then?

Productive simulation
– easy ,

Analysis of the trajectory
– let us see. . .
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Analysis of the simulation
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Thermodynamic properties

time averages of thermodynamic quantities
– correspond to ensemble averages (ergodic theorem)

some quantities – evaluated directly

U = 〈E 〉t

fluctuations – may determine interesting properties:
isochoric heat capacity:

CV =

(
∂U

∂T

)
V

=
σ2
E

kBT 2
=

〈
E 2
〉
− 〈E 〉2

kBT 2

– elegant way to get heat capacity from a single simulation
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Structure – single molecule in solvent

concentrating on the dissolved molecule
– protein, DNA,. . .

average structure
– arithmetic mean of coordinates
from snapshots along MD trajectory

~ri =
1

N

N∑
n=1

~r
(n)
i

– clear, simple, often reasonable
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Average structure

Possible problems:

freely rotatable single bonds – CH3

– all 3 hydrogens collapse to a single point
– no problem – ignore hydrogens

rotation of the entire molecule – no big issue
– RMSD fitting of every snapshot to the starting structure

what is RMSD? see on the next slide. . .

molecule does not oscillate around a single structure
– several available minima of free energy
– possibly averaging over multiple sections of trajectory
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Dynamic information

root mean square deviation (RMSD)
of structure in time t
from a suitable reference structure ~r ref

RMSD(t) =

√√√√ 1

N

N∑
i=1

∣∣~ri (t)− ~r ref
i

∣∣2
follows the development of structure in time

reference structure – starting or average geometry

also possible – comparison with another geometry of interest
DNA: A- and B-like; proteins: α-helix and extended β

RMSD fitting – finding such a translation + rotation
that minimizes the RMSD from the reference structure
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Root mean square deviation

RMSD of non-hydrogen atoms of a DNA oligonucleotide
from given geometries
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Root mean square deviation

RMSD of non-hydrogen atoms of a DNA oligonucleotide
from given geometries
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Root mean square deviation

B-DNA average structure A-DNA
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Magnitude of structural fluctuation

root mean square fluctuation (RMSF)
of position of every single atom
averaged along MD trajectory

RMSFi =

√〈
|~ri − 〈~ri 〉|2

〉
– may be converted to B-factor

Bi =
8

3
π2 · RMSF2

i

– observable in diffraction experiments (X-ray. . . )
– contained in structure files deposited in the PDB
– comparison of simulation with X-ray may be difficult
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Root mean square fluctuation

RMSF of atomic positions in DNA oligonucleotide
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Root mean square fluctuation

RMSF of atomic positions in DNA oligonucleotide

(blue < green < yellow < red)
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Structure of peptides and proteins

Ramachandran plot
– 2D histogram of dihedrals φ and ψ along the backbone
– different regions correspond to various second. structures
– may be generated easily in simulation software packages
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Structure of peptides and proteins

Ramachandran plot
– 2D histogram of dihedrals φ and ψ along the backbone
– different regions correspond to various second. structures
– may be generated easily in simulation software packages
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Structure of peptides and proteins

Distance matrix
– distances of amino-acid residues, represented e.g.

by centers of mass or by Cα atoms
– either time-dependent or averaged over trajectory
– bioinformatics

distance matrix between two chains (horiz. and vertical axes)
shows contacts between secondary structure elements

PDB ID 1XI4, clathrin cage lattice, April 2007 Molecule of the Month

http://www2.warwick.ac.uk/fac/sci/moac/people/students/peter cock/python/protein contact map
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Structure of fluids

example – pure argon or water – different situation
– many molecules, which are all equally important

radial distribution functions

describe how the molecular density varies
as a function of the distance from one particular molecule

spherical shell of thickness δr at a distance r : δV ≈ 4πr2 · δr
count the number of molecules in this shell: n

divide by δV to obtain a ‘local density’ at distance r

pair distribution function
– probability to find a molecule in distance r from ref. mol.

g(r) =
n/δV

ρ
=

n

4πr2 · δr
· 1

ρ
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Pair distribution function

Lennard-Jones fluid near the triple point and hard-sphere fluid – reprinted from Nezbeda, Kolafa and Kotrla 1998

g(r) vanishes on short distances – molecules cannot intersect

high peak – van der Waals radius, closest-contact distance
(even though hard spheres do not have any attraction!)

– much more likely to find this distance in LJ or HS than in IG

longer distances – a few shallow minima and maxima,
converges to unity – uniform probability as in IG
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Pair distribution function

Fourier transform of g(r) – structure factor S

S(~q) =
1

N

〈∑
j

∑
k

exp [−i · ~q · (~rj − ~rk)]

〉

– quantifies the scattering of incoming radiation in the material
– measured in diffraction experiments (X-ray, neutron)
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intermission: Fourier transformation

FT describes which frequencies are present in a function (of time)
– decomposes f (t) into a ‘sum’ of periodic oscillatory functions

F (ω) =

∫ ∞
−∞

f (t) · exp [−iωt] dt

note that exp [−iωt] = cos [ωt]− i sin [ωt]
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Pair distribution function

Importance – not only information about the structure
calculation of thermodynamic properties possible
using potential energy u(r) and force f (r) of a molecule pair

corrections to the IG values of total energy and pressure (EOS!):

E − 3

2
NkBT = 2πNρ

∫ ∞
0

r2 · u(r) · g(r) dr

P − ρ kBT = −2π

3
ρ2

∫ ∞
0

r3 · f (r) · g(r) dr

(as long as pairwise additivity of forces can be assumed)

Marcus Elstner and Tomáš Kubǎr Biomolecular modeling III



Non-bonded interactions
Preparing an MD simulation

Analysis of the simulation

Correlation functions

two physical quantities x and y may exhibit correlation

indicates a relation of x and y , opposed to independence

Pearson correlation coefficients
– describe linear relationship between x and y
– quantities fluctuate around mean values 〈x〉 and 〈y〉
– consider only the fluctuating part
– introduce correlation coefficient ρxy

ρxy =
〈(x − 〈x〉) · (y − 〈y〉)〉√
〈(x − 〈x〉)2〉 · 〈(y − 〈y〉)2〉

=
cov(x , y)

σx · σy

cov(x , y): covariance of x and y
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Correlation functions

(not necessarily linear) correlation of two quantities
and the corresponding correlation coefficients

Downloaded from Wikipedia
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Correlation functions

MD – values of a quantity x as a function of time: x = x(t)
the value of x may be correlated

with the value of x at an earlier time point
– described by autocorrelation function (ACF)

cx(t) =
〈x(t) · x(0)〉
〈x(0) · x(0)〉

=

∫
x(t ′) x(t ′ + t) dt ′∫

x2(t ′) dt ′

– correlation of the same property x
at two time points separated by t,
averaged over all pairs of such time points,
normalized to take values between −1 and +1
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Autocorrelation of velocity

autocorrelation function – quantifies ‘memory’ of the system,
or how quickly the system ‘forgets’ its previous state

velocity autocorrelation function
– tells how closely the velocities of atoms

at time t resemble those at time 0
– usually averaged over all atoms i in the simulation

cv (t) =
1

N

N∑
i=1

〈~vi (t) · ~vi (0)〉
〈~vi (0) · ~vi (0)〉

– typical ACF starts at 1 in t = 0 and decreases afterwards
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Autocorrelation of velocity

ACF of velocity in simulations of liquid argon (densities in g·cm−3)

Reprinted from Leach: Molecular Modelling

lower ρ – gradual decay to 0
higher ρ – ACF comes faster to 0
– even becomes negative briefly
– ‘cage’ structure of the liquid
– one of the most interesting

achievements
of early simulations
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Autocorrelation of velocity

time needed to lose the autocorrelation whatsoever
– correlation time or relaxation time:

τv =

∫ ∞
0

cv (t) dt

may help to resolve certain statistical issues:
when averaging over time the properties of system,

it is necessary to take uncorrelated values
if the property is dynamical (related to v),

we can take values of the property separated by τv
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Autocorrelation of velocity

connection between velocity ACF and transport properties
– Green–Kubo relation for self-diffusion coefficient D:

D =
1

3

∫ ∞
0
〈~vi (t) · ~vi (0)〉i dt

– interesting observable quantities
– important to be able to calculate them from MD
– another way: Einstein relation for D

D =
1

6
lim
t→∞

〈
|~ri (t)− ~ri (0)|2

〉
i

t

NB: Fick’s laws of diffusion J = −D ∂φ
∂x , ∂φ

∂t = D ∂2φ
∂x2
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Autocorrelation of dipole moment

velocity – property of a single atom; contrary to that –
– some quantities need to be evaluated for whole system

total dipole moment:

~µtot(t) =
N∑
i=1

~µi (t)

ACF of total dipole moment:

cµ(t) =
〈~µtot(t) · ~µtot(0)〉
〈~µtot(0) · ~µtot(0)〉

– related to the vibrational spectrum of the sample
– IR spectrum to be obtained as Fourier transform of dipolar ACF
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Autocorrelation of dipole moment

IR spectra for liquid water from simulations

thick – classical MD,
thin – quantum correction,
black dots – experiment
B. Guillot, J. Phys. Chem. 1991

no sharp peaks at well-defined
frequencies (as in gas phase)

rather – continuous bands –
liquid absorbs frequencies
in a broad interval

frequencies – equivalent to
the rate of change
of total dipole moment
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Principal component analysis

covariance analysis on the atomic coordinates along MD trajectory
= principal component analysis (PCA), or essential dynamics

3N-dim. covariance matrix C of atomic coordinates ri ∈ {xi , yi , zi}

Cij = 〈(ri − 〈ri 〉) · (rj − 〈rj〉)〉t or

Cij =
〈√

mi (ri − 〈ri 〉) ·
√
mj(rj − 〈rj〉)

〉
t

diagonalization →
eigenvalues – may be expressed as vibrational frequencies
eigenvectors – principal or essential modes of motion

– analogy of normal modes of vibration
– first few – global, collective motions, many atoms involved
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Principal component analysis

example – PCA of a double-stranded DNA octanucleotide,
frequencies and 3 lowest eigenvectors
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Principal component analysis

DNA – the modes are the same as expected for a flexible rod
– 2 bending modes around axes perpendicular

to the principal axis of the DNA, and a twisting mode

PCA – gives an idea of what the modes of motion look like
– additionally – basis for thermodynamic calculations

– vibrational frequencies may lead to configurational entropy
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