Biomolecular modeling I

Marcus Elstner and Tomáš Kubař

2016, December 6

Marcus Elstner and Tomáš Kubař Biomolecular modeling I

Biomolecular structure

Structural elements of life Biomolecules – proteins, nucleic acids, lipids, carbohydrates ...

Biomolecular structure

 $\label{eq:Biomolecules} Biomolecules \to biomolecular \ complexes \to aggregates \to \dots \to organelles \to a \ cell$

Biomolecular function

Biophysical processes

- Bioenergetics reception, transformation and utilization of energy
- Catalysis synthesis of substances, metabolism
- Transport exchange of small molecules, ions up to proteins with the surroundings
- Sensing detection / recognition / binding in presence of a stimulus

Theoretical / computational biophysics

Molecular modeling

- Focus: understanding on the atomic scale
- The structure and dynamics determine the properties and function of biological molecules
- Prediction of experimentally relevant data
- Molecular design of materials with desired properties
- The way to the goal in general: solution of quantum mechanical many-body problem
- QM MB approach would be too inefficient \rightarrow apply more approximative methods

Methods

Hybrid method – QM/MM

- Quantum chemistry (QM)
 - bonds created/broken
 - computionally costly
 - DFT or ab initio, up to 100 atoms
 - semi-empirical, up to 1000 atoms
- Molecular mechanics (MM)
 - efficient for up to 100,000 atoms
 - generally structural properties
- Hybrid QM/MM
 - chemical reactions etc.

Timeline

- 1687 Newton, equations of motion
- similar Hooke, harmonic spring
- . . .
- 1946 molecular mechanics
- 1950s useful computers
- 1959 Alder & Wainwright, molecular dynamics of a fluid
- 1975 molecular dynamics of a protein Levitt & Warshel, Gelint & Karplus
- 1976 QM/MM proposed, Levitt & Warshel
- 1990 significant QM/MM work, Karplus

Timeline

1st simulation of protein dynamics

- BPTI, 58 AAs, in vacuo, 9.2 ps
- McCammon, Gelin & Karplus, Nature 1977
- starting point crystal structure

Timeline

simulation of protein in aqueous solution

- BPTI + water, 210 ps
- Levitt & Sharon, PNAS 1988

today's standard – 100,000 atoms, 100 ns

Contact with experimental reality

- X-ray and neutron diffraction
- STM/AFM imaging
- electronic / optical spectra
- electronic and nuclear magnetic resonance
- vibrational / IR spectra
- thermodynamic measurements DSC, ITC

Applications

Structure and dynamics of complex biomolecular systems

- protein folding
- protein–ligand interaction
- proteins as nanomachines

Applications

Transport

- electrons
- protons across membrane
- water, ions, small molecules, ...

Marcus Elstner and Tomáš Kubař

Biomolecular modeling I

Applications

Enzymes

- catalyzed chemical reactions
- energy conversion (light, chem., mech., gradients)
- bioenergetics

Challenges

- system size limited to ca. 100,000 atoms
- time scales limited to few microseconds
- accuracy of description
 - bonded interaction (vibration, rotation)
 - non-bonded interaction (charge-transfer, polarizability)
- excited electronic states
- quantum character of movement of nuclei

Some can be tackled with

- further development of available methods
- combination of various methods
- optimization of algorithms

parallelization, $\mathcal{O}(N)$ – linear scaling

Nobel prizes for computational chemistry

The Nobel Prize in Chemistry 1998

R

2

Walter Kohn Prize share: 1/2

John A. Pople Prize share: 1/2

The Nobel Prize in Chemistry 1998 was divided equally between Walter Kohn *"for his development of the density-functional theory"*

Nobel prizes for computational chemistry

The Nobel Prize in Chemistry 2013

© Harvard University Martin Karplus

Photo: © S. Fisch Michael Levitt

Photo: Wikimedia Commons Arieh Warshel

The Nobel Prize in Chemistry 2013 was awarded jointly to Martin Karplus, Michael Levitt and Arieh Warshel *"for the development of multiscale*

Marcus Elstner and Tomáš Kubař Biomolecular modeling I

Biomolecular simulation

Elementary body – atom

Usually - one molecule/complex of interest (e.g. protein, NA)

Simulation vs. reality One molecule instead of many Tiny volume of $\approx 10^{-21}$ L instead of $\approx 10^{-5}$ L Dynamics – short time scale of max. $\approx 10^{-5}$ s

Biomolecular simulation

Each atom -x, y, z coordinates

"A protein is a set of coordinates." (Gromacs, A. P. Heiner)

Peptide in	lipid-	water						
48609								
1LYS	N	1	4.360	4.040	8.207	0.2882	0.4041	-0.5575
1LYS	H1	2	4.416	4.119	8.178	0.4151	0.4652	-0.1555
1LYS	H2	3	4.340	4.037	8.306	0.8750	-1.7473	-0.4570
1LYS	H3	4	4.407	3.954	8.185	0.3515	0.2061	0.2987
1LYS	CA	5	4.231	4.037	8.136	0.0777	0.2898	-0.1753
1LYS	HA	6	4.162	4.112	8.174	-0.6060	-0.8009	0.7924
1LYS	CB	7	4.262	4.069	7.990	-0.3012	0.3768	-0.2373
1LYS	HB1	8	4.360	4.025	7.969	0.6025	1.3517	1.6736
1LYS	HB2	9	4.300	4.171	7.998	0.1892	0.2300	-0.6695
1LYS	CG	10	4.161	4.049	7.877	-0.5841	0.0286	0.0762
1LYS	HG1	11	4.056	4.067	7.900	-0.9362	-1.1078	-0.5669
1LYS	HG2	12	4.148	3.942	7.863	-3.1278	0.1078	1.2506
1LYS	CD	13	4.196	4.123	7.749	0.0459	-1.0686	-0.3967
1LYS	HD1	14	4.298	4.095	7.721	-0.3753	-3.6647	0.4016
1LYS	HD2	15	4.205	4.228	7.778	3.4358	-1.4671	0.3786
1LYS	CE	16	4.088	4.101	7.644	-0.3622	0.1377	-0.2469
1LYS	HE1	17	3.992	4.138	7.679	-1.1725	-0.1480	-2.0367
1LYS	HE2	18	4.073	3.994	7.628	-3.0282	0.2507	0.9872
1LYS	NZ	19	4.124	4.174	7.521	-0.0992	0.0204	-0.2407
1LYS	HZ1	20	4.056	4.156	7.449	-2.5018	1.3804	1.5513
1LYS	HZ2	21	4.118	4.275	7.528	-1.2171	-0.0196	-0.4614

Simulation vs. reality

Why should we want to simulate molecular systems?

Experiment – the molecule has its genuine properties Simulation – we need a model to describe the interactions of atoms – the quality of the model is decisive

Advantage of simulation - structure on atomic level defined

 $\mathsf{Structure} \to \mathsf{function}$

Combination of experiment and simulation - added value

Molecular mechanics

classical description of molecules

Motivation

- To investigate the function of biomolecules, we need to characterize its structure and dynamics.
- We will look how the molecules are moving – Molecular Dynamics
- For this, we need to calculate the forces on atoms and the energy of the system
- Energy from quantum mechanics / quantum chemistry seemingly easy $E = \langle \Psi | \hat{H} | \Psi \rangle$ but not quite possible for large molecular systems

Motivation

$$\begin{bmatrix} -\frac{\hbar^2}{2m_e\lambda^2} \nabla'^2 - \frac{e^2}{4\pi\epsilon_0\lambda r'} \end{bmatrix} \phi' = \mathscr{E}\phi'$$

$$[ij|kl] = \int d\mathbf{x}_1 \, d\mathbf{x}_2 \, \chi_1^*(\mathbf{x}_1)\chi_j(\mathbf{x}_1)r_{12}^{-1}\chi_k^*(\mathbf{x}_2)\chi_l(\mathbf{x}_2)$$

$$F_{\mu\nu} = \int d\mathbf{r}_1 \, \phi_{\mu}^*(1)f(1)\phi_{\nu}(1)$$

$$= \int d\mathbf{r}_1 \, \phi_{\mu}^*(1)h(1)\phi_{\nu}(1) + \sum_{a}^{N/2} \int d\mathbf{r}_1 \, \phi_{\mu}^*(1)[2J_a(1) - K_a(1)]\phi_{\nu}(1)$$

$$= H_{\mu\nu}^{core} + \sum_{a}^{N/2} 2(\mu\nu|aa) - (\mu a|a\nu)$$

$$|\Phi\rangle = c_0|\Psi_0\rangle + \sum_{ra} c_a^{ra}|\Psi_{a}^r\rangle + \sum_{a < b} c_{ab}^{ra}|\Psi_{ab}^r\rangle + \sum_{a < b < rack} c_{ab < l}^{ra}|\Psi_{abc}^{rad}\rangle + \cdots$$

$$E_0^{(2)} = \sum_{a,b=1}^{N/2} \sum_{r < n(N/2+1)}^{K} \frac{\langle ab|rs\rangle(2(rs|ab) - \langle rs|ba\rangle)}{\epsilon_a + \epsilon_b - \epsilon_r - \epsilon_{\nu}}$$

Idea of molecular mechanics

- often well localized bonding orbitals (organic molecules)
- idea similar bonds have similar strength and properties e.g. similar C–H σ -orbitals \rightarrow all C–H bonds are 'similar'
- possibly model with a harmonic spring? (simplest function)

$$E(x) = \frac{1}{2}k(x - x_0)^2$$

$$F(x) = -\frac{\partial E(x)}{\partial x} = -k(x - x_0)$$

2 parameters k and x₀ with defined meaning
 - can be obtained from spectroscopy

Concept of (atom, bond...) type

- let us use harmonic springs for covalent bonds
- we do not want to parametrize k and x_0 each bond separately
- use just several sets (k, x_0) , for different types of bonds

Why can we expect such 'unification' to work?

Concept of (atom, bond...) type

Spectroscopy

 every C–H bond: length 1.06–1.11 Å, frequency ca. 3100 cm⁻¹, in any molecular environment

Thermochemistry

• heat of formation - roughly additive:

$$\begin{array}{l} \mathsf{CH}_4 \cong \mathsf{4} \ \mathsf{C}\text{-}\mathsf{H} \\ \mathsf{C}_2\mathsf{H}_6 \cong \mathsf{6} \ \mathsf{C}\text{-}\mathsf{H} \, + \, \mathsf{C}\text{-}\mathsf{C} \end{array}$$

Concept of (atom, bond...) type

How to identify the atom types? - chemical ideas

- i) hybridization
 - different types for sp^3 carbon (4 bonds) and sp^2 C (3 bonds)
 - \bullet different functions for bonds of types C–C, C=C and C=C
 - determine the parameters (k, x₀) with some selected molecules, typical for the binding situation
 - example: use C_2H_6 , C_2H_4 , C_2H_2 and benzene for k, x_0

Concept of (atom, bond...) type

How to identify the atom types? - chemical ideas

- ii) polarity
 - $\bullet\,$ an atom bonded to electronegative atom electron deficient $\rightarrow\,$ affects its bonding to other atoms
 - example: C−C bond in O=CH−C... is affected and needs to be parametrized differently from apolar C−C → an atom type for carbonyl C introduced

Biomolecular force fields

– usually 20 types for C, 10 for N and 5 for O and H

Concept of (atom, bond...) type

AMBER types for carbon:

C - sp2 C carbonyl group CA - sp2 C pure aromatic (benzene) CB - sp2 aromatic C, 5&6 membered ring junction CC - sp2 aromatic C, 5 memb. ring HIS CK - sp2 C 5 memb.ring in purines CM - sp2 C pyrimidines in pos. 5 & 6 CN - sp2 C aromatic 5&6 memb.ring junct.(TRP) CQ - sp2 C in 5 mem.ring of purines between 2 N CR - sp2 arom as CQ but in HIS CT - sp3 aliphatic C CV - sp2 arom. 5 memb.ring w/1 N and 1 H (HIS) CW - sp2 arom. 5 memb.ring w/1 N-H and 1 H (HIS) C* - sp2 arom. 5 memb.ring w/1 subst. (TRP)

Concept of (atom, bond...) type

AMBER atom types in a molecule of uracil

Interactions between atoms

Bonded

- mediated by, and resulting directly from covalent bonds
- cover all of the quantum-mechanical phenomena between pairs of atoms with effective potentials
- harmonic springs between atoms (also angles and dihedrals) Non-bonded
 - longer-range interactions
 - charge–charge (Coulomb) and van der Waals (vdW)
 - between molecules and distant parts of one molecule

Coulomb interaction

• idea – condense electrons in each atom with the nucleus \rightarrow effective atomic charge $q_i = -Q_i + Z_i$:

$$E_{QQ} = rac{1}{2}\sum_{ij}rac{q_i\cdot q_j}{R_{ij}}$$

- needs to be defined for every atom rather than atom type – this would be too crude
- from quantum-chemical calculations
 - of typical (bio)molecular fragments
 - amino acid residues and peptide bonds for proteins
 - nucleobases, sugars and phosphate groups for DNA/RNA

Coulomb interaction

How to calculate atomic charges?

• popular – potential-derived charges:

calculate the electron density in the molecule
get electrostatic potential at surface of the molecule
fit point electric charges on atoms to reproduce the ESP

Possible improvement – polarizable force field

- atomic polarizability α_i is assigned to every atom i
- external field induces atomic dipole $\overrightarrow{\mu_i} = \overleftarrow{\alpha_i} \cdot \overrightarrow{E}$

Coulomb interaction

surface of the uracil molecule

Pauli repulsion

• electrons with the same spin avoid spatial overlap

• modeling:

$$E_{\text{ex}} = \exp\left[a - b \cdot R_{ij}\right]$$
$$E_{\text{ex}} = \left(\frac{\sigma}{R_{ij}}\right)^{12}$$

dispersion due to correlation

- correlation between electrons irrespective of spin, retained on longer distances
- instantaneous dipole \rightarrow induced dipole \rightarrow interaction
- orientation of dipoles is correlated
 attractive interaction
- *R*⁻⁶-dependence, proportional to polarizabilities

most common function: Lennard-Jones 12-6 potential

$$V(r) = 4\varepsilon \left(\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right)$$

• 2 parameters – σ and ε

repulsive: exp $\left[\alpha \left(1 - \frac{r}{\sigma}\right)\right]$ sometimes better than $\left(\frac{\sigma}{r}\right)^{12} \rightarrow \exp{-6}$ potential

• may be a better choice for phase transitions

• e.g. MM water would not freeze below 0 °C with LJ 12-6 note: phase transitions are difficult to simulate generally

van der Waals interaction

parametrization

- challenging task in general
- fitting of params to experimental / quantum-chem. data
- e.g. relation to density and heat of vaporization
 - obvious in organic liquids major interaction

Hydrogen bonding

- crucial interaction in biomolecules
- interplay of several kinds of interactions
- typical binding energies: 20 kJ/mol higher for strongly polarized or even charged molecules or if there are several H-bonds (nucleobase pairs)
- early force fields special potential functions for H-bonding
- modern force fields no special treatment

Hydrogen bonding

H_2O dimer

guanine:cytosine base pair

Hydrogen bonding

- Coulomb interaction is dominant
- vdW interaction
 - may become important, especially in weakly bound systems
 - crucial e.g. for angular dependence in $H_2CO...H_2O$ etc.
- charge transfer contribution
 - cannot be covered by force fields due to constant charges
 - may be included in other terms effectively

Hydrogen bonding

charge transfer – into the σ^* orbital

 \rightarrow weakening of the X–H bond \rightarrow red shift in the IR spectrum

Bonds

• harmonic approximation (Taylor expansion up to 2nd order)

$$E(r)=\frac{1}{2}k(r-r_0)^2$$

- 2 parameters equilibrium distance and force constant
- works in a narrow interval of distances
- often sufficient (vibrations are within the interval)
- if bonds are to be created or broken (chemistry) another solution has to be sought
 - ightarrow probably leave molecular mechanics $\ensuremath{\mathfrak{S}}$

- for accurate vibration frequencies
 - quartic terms can be important to describe the curvature

Angles

• harmonic approximation for the angle deformation

$$E_{\mathsf{bend}}(artheta) = rac{1}{2} k_artheta (artheta - artheta_0)^2$$

- 2 parameters needed equilibrium angle and force constant
- from experiment (vib-rot spectra) or quantum chemistry

Dihedral angles

• describe the rotation around covalent bonds

- defined by 4 atoms
- potential energy periodic function of the dihedral angle:

$$E(\omega) = \sum_{n=1,2,3,4,6} V_n \cos\left[n \cdot \omega - \gamma_n\right]$$

• V_n – amplitude (barrier), n – periodicity, γ – phase shift

Dihedral angles – example: C–C single and C=C double bonds

The complete equation

$$E(R^N) =$$

$$= \frac{1}{2} \sum_{i} k_{i} (r_{i} - r_{i}^{0})^{2} + \frac{1}{2} \sum_{j} k_{j}^{\vartheta} (\vartheta_{j} - \vartheta_{j}^{0})^{2} + \frac{1}{2} \sum_{n} V_{n} \cdot \cos[n\omega - \gamma_{n}]$$
$$+ \sum_{i}^{N} \sum_{j=i+1}^{N} \left\{ 4\varepsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right) + \frac{1}{4\pi\varepsilon_{0}} \frac{q_{i}q_{j}}{r_{ij}} \right\}$$

Molecular dynamics simulation

how to get things moving

Equations of motion

$$m \cdot \ddot{r} = F$$

ordinary differential equations of 2nd order

- have to be solved numerically
- solution proceeds in discreet steps of length Δt
- numerical integration starts at time t₀, where the initial conditions are specified - the positions r₀ and the velocities v₀
- calculations of forces at r_0 to get accelerations a_0
- ullet then, an integrator calculates r and v at time $t_0+\Delta t$
- accelerations \rightarrow step \rightarrow accelerations \rightarrow step \rightarrow ...

Verlet integration method

for the development of the method: take a virtual step in positive time and in 'negative' time,

and Taylor expansion up to 2nd order:

$$r(t + \Delta t) = r(t) + \dot{r}(t) \cdot \Delta t + \frac{1}{2}\ddot{r}(t) \cdot \Delta t^{2}$$

$$r(t - \Delta t) = r(t) - \dot{r}(t) \cdot \Delta t + \frac{1}{2}\ddot{r}(t) \cdot \Delta t^{2}$$

add both equations – eliminate the velocity \dot{r} :

$$r(t + \Delta t) = 2 \cdot r(t) - r(t - \Delta t) + \ddot{r}(t)\Delta t^{2}$$
$$\ddot{r}(t) = a(t) = \frac{F(t)}{m} = -\frac{1}{m}\frac{\partial V}{\partial r}(t)$$

Verlet integration method

another but equivalent formulation - velocity Verlet

$$\begin{aligned} r(t + \Delta t) &= r(t) + v(t) \cdot \Delta t + \frac{1}{2}a(t) \cdot \Delta t^2 \\ v(t + \Delta t) &= v(t) + \frac{1}{2}(a(t) + a(t + \Delta t)) \cdot \Delta t \end{aligned}$$

yet another – Leap-frog

$$egin{aligned} v(t+rac{1}{2}\Delta t) &= v(t-rac{1}{2}\Delta t)+a(t)\cdot\Delta t \ r(t+\Delta t) &= r(t)+v(t+rac{1}{2}\Delta t)\cdot\Delta t \end{aligned}$$

both: better numerical precision than Verlet normal form

Δt – crucial parameter

Let us say: we want to obtain a trajectory over a time interval T

- we perform M steps
- we have to evaluate the forces on atoms $M = T/\Delta t$ times

Computational cost of the calculation of forces

- major computational effort
- determines how many steps we can afford to make

Δt – crucial parameter

- we neglect contributions in Δt^3 and higher orders \rightarrow error per step in the order of Δt^3
- keep the step short \rightarrow make the error small but need too many steps to simulate certain time T
- make the step long \rightarrow cut computational cost but increase the error and decrease stability
- compromise needed

Δt – crucial parameter

- fastest motion hydrogen atoms, period around 10 fs
- rule of thumb stable integration with $\Delta t \leq \frac{1}{10}$ fastest period
- practically, Δt of 1 fs is used (2 fs with special treatment)
- 1M calculations of forces needes for a trajectory of 1 ns
- large systems multi-ns simulations routinely, μ s possible