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Roland Schulz, Michael Shirts, Alfons Sijbers,
Peter Tieleman, Christian Wennberg and Maarten Wolf.

Mark Abraham, Berk Hess, David van der Spoel, and Erik
Lindahl.

c© 1991–2000: Department of Biophysical Chemistry, University of Groningen.
Nijenborgh 4, 9747 AG Groningen, The Netherlands.

c© 2001–2014: The GROMACS development teams at the Royal Institute of Technology and
Uppsala University, Sweden.

More information can be found on our website: www.gromacs.org.

http://www.gromacs.org


iv

Preface & Disclaimer

This manual is not complete and has no pretention to be so due to lack of time of the contributors
– our first priority is to improve the software. It is worked on continuously, which in some cases
might mean the information is not entirely correct.

Comments on form and content are welcome, please send them to one of the mailing lists (see
www.gromacs.org), or open an issue at redmine.gromacs.org. Corrections can also be made in the
GROMACS git source repository and uploaded to gerrit.gromacs.org.

We release an updated version of the manual whenever we release a new version of the software,
so in general it is a good idea to use a manual with the same major and minor release number as
your GROMACS installation.

On-line Resources

You can find more documentation and other material at our homepage www.gromacs.org. Among
other things there is an on-line reference, several GROMACS mailing lists with archives and
contributed topologies/force fields.

Citation information

When citing this document in any scientific publication please refer to it as:

M.J. Abraham, D. van der Spoel, E. Lindahl, B. Hess, and the GROMACS
development team, GROMACS User Manual version 5.0, www.gromacs.org
(2014)

However, we prefer that you cite (some of) the GROMACS papers [1, 2, 3, 4, 5, 6] when you
publish your results. Any future development depends on academic research grants, since the
package is distributed as free software!

GROMACS is Free Software

The entire GROMACS package is available under the GNU Lesser General Public License, version
2.1. This means it’s free as in free speech, not just that you can use it without paying us money. For
details, check the COPYING file in the source code or consult http://www.gnu.org/licenses/old-
licenses/lgpl-2.1.html.

The GROMACS source code and and selected set of binary packages are available on our home-
page, www.gromacs.org. Have fun.
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Chapter 1

Introduction

1.1 Computational Chemistry and Molecular Modeling

GROMACS is an engine to perform molecular dynamics simulations and energy minimization.
These are two of the many techniques that belong to the realm of computational chemistry and
molecular modeling. Computational chemistry is just a name to indicate the use of computational
techniques in chemistry, ranging from quantum mechanics of molecules to dynamics of large
complex molecular aggregates. Molecular modeling indicates the general process of describing
complex chemical systems in terms of a realistic atomic model, with the goal being to under-
stand and predict macroscopic properties based on detailed knowledge on an atomic scale. Often,
molecular modeling is used to design new materials, for which the accurate prediction of physical
properties of realistic systems is required.

Macroscopic physical properties can be distinguished by (a) static equilibrium properties, such
as the binding constant of an inhibitor to an enzyme, the average potential energy of a system, or
the radial distribution function of a liquid, and (b) dynamic or non-equilibrium properties, such
as the viscosity of a liquid, diffusion processes in membranes, the dynamics of phase changes,
reaction kinetics, or the dynamics of defects in crystals. The choice of technique depends on the
question asked and on the feasibility of the method to yield reliable results at the present state of
the art. Ideally, the (relativistic) time-dependent Schrödinger equation describes the properties of
molecular systems with high accuracy, but anything more complex than the equilibrium state of a
few atoms cannot be handled at this ab initio level. Thus, approximations are necessary; the higher
the complexity of a system and the longer the time span of the processes of interest is, the more
severe the required approximations are. At a certain point (reached very much earlier than one
would wish), the ab initio approach must be augmented or replaced by empirical parameterization
of the model used. Where simulations based on physical principles of atomic interactions still
fail due to the complexity of the system, molecular modeling is based entirely on a similarity
analysis of known structural and chemical data. The QSAR methods (Quantitative Structure-
Activity Relations) and many homology-based protein structure predictions belong to the latter
category.

Macroscopic properties are always ensemble averages over a representative statistical ensemble
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(either equilibrium or non-equilibrium) of molecular systems. For molecular modeling, this has
two important consequences:

• The knowledge of a single structure, even if it is the structure of the global energy min-
imum, is not sufficient. It is necessary to generate a representative ensemble at a given
temperature, in order to compute macroscopic properties. But this is not enough to compute
thermodynamic equilibrium properties that are based on free energies, such as phase equi-
libria, binding constants, solubilities, relative stability of molecular conformations, etc. The
computation of free energies and thermodynamic potentials requires special extensions of
molecular simulation techniques.

• While molecular simulations, in principle, provide atomic details of the structures and mo-
tions, such details are often not relevant for the macroscopic properties of interest. This
opens the way to simplify the description of interactions and average over irrelevant details.
The science of statistical mechanics provides the theoretical framework for such simpli-
fications. There is a hierarchy of methods ranging from considering groups of atoms as
one unit, describing motion in a reduced number of collective coordinates, averaging over
solvent molecules with potentials of mean force combined with stochastic dynamics [7],
to mesoscopic dynamics describing densities rather than atoms and fluxes as response to
thermodynamic gradients rather than velocities or accelerations as response to forces [8].

For the generation of a representative equilibrium ensemble two methods are available: (a) Monte
Carlo simulations and (b) Molecular Dynamics simulations. For the generation of non-equilibrium
ensembles and for the analysis of dynamic events, only the second method is appropriate. While
Monte Carlo simulations are more simple than MD (they do not require the computation of forces),
they do not yield significantly better statistics than MD in a given amount of computer time. There-
fore, MD is the more universal technique. If a starting configuration is very far from equilibrium,
the forces may be excessively large and the MD simulation may fail. In those cases, a robust en-
ergy minimization is required. Another reason to perform an energy minimization is the removal
of all kinetic energy from the system: if several “snapshots” from dynamic simulations must be
compared, energy minimization reduces the thermal noise in the structures and potential energies
so that they can be compared better.

1.2 Molecular Dynamics Simulations

MD simulations solve Newton’s equations of motion for a system of N interacting atoms:

mi
∂2ri
∂t2

= F i, i = 1 . . . N. (1.1)

The forces are the negative derivatives of a potential function V (r1, r2, . . . , rN ):

F i = −∂V
∂ri

(1.2)

The equations are solved simultaneously in small time steps. The system is followed for some
time, taking care that the temperature and pressure remain at the required values, and the coor-
dinates are written to an output file at regular intervals. The coordinates as a function of time
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type of wavenumber
type of bond vibration (cm−1)
C-H, O-H, N-H stretch 3000–3500
C=C, C=O stretch 1700–2000
HOH bending 1600
C-C stretch 1400–1600
H2CX sciss, rock 1000–1500
CCC bending 800–1000
O-H· · ·O libration 400– 700
O-H· · ·O stretch 50– 200

Table 1.1: Typical vibrational frequencies (wavenumbers) in molecules and hydrogen-bonded liq-
uids. Compare kT/h = 200 cm−1 at 300 K.

represent a trajectory of the system. After initial changes, the system will usually reach an equi-
librium state. By averaging over an equilibrium trajectory, many macroscopic properties can be
extracted from the output file.

It is useful at this point to consider the limitations of MD simulations. The user should be aware
of those limitations and always perform checks on known experimental properties to assess the
accuracy of the simulation. We list the approximations below.

The simulations are classical
Using Newton’s equation of motion automatically implies the use of classical mechanics to
describe the motion of atoms. This is all right for most atoms at normal temperatures, but
there are exceptions. Hydrogen atoms are quite light and the motion of protons is sometimes
of essential quantum mechanical character. For example, a proton may tunnel through a
potential barrier in the course of a transfer over a hydrogen bond. Such processes cannot be
properly treated by classical dynamics! Helium liquid at low temperature is another example
where classical mechanics breaks down. While helium may not deeply concern us, the high
frequency vibrations of covalent bonds should make us worry! The statistical mechanics of a
classical harmonic oscillator differs appreciably from that of a real quantum oscillator when
the resonance frequency ν approximates or exceeds kBT/h. Now at room temperature the
wavenumber σ = 1/λ = ν/c at which hν = kBT is approximately 200 cm−1. Thus, all
frequencies higher than, say, 100 cm−1 may misbehave in classical simulations. This means
that practically all bond and bond-angle vibrations are suspect, and even hydrogen-bonded
motions as translational or librational H-bond vibrations are beyond the classical limit (see
Table 1.1). What can we do?

Well, apart from real quantum-dynamical simulations, we can do one of two things:
(a) If we perform MD simulations using harmonic oscillators for bonds, we should make
corrections to the total internal energyU = Ekin+Epot and specific heatCV (and to entropy
S and free energy A or G if those are calculated). The corrections to the energy and specific
heat of a one-dimensional oscillator with frequency ν are: [9]

UQM = U cl + kT

(
1

2
x− 1 +

x

ex − 1

)
(1.3)
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CQMV = CclV + k

(
x2ex

(ex − 1)2
− 1

)
, (1.4)

where x = hν/kT . The classical oscillator absorbs too much energy (kT ), while the high-
frequency quantum oscillator is in its ground state at the zero-point energy level of 1

2hν.
(b) We can treat the bonds (and bond angles) as constraints in the equations of motion. The
rationale behind this is that a quantum oscillator in its ground state resembles a constrained
bond more closely than a classical oscillator. A good practical reason for this choice is
that the algorithm can use larger time steps when the highest frequencies are removed. In
practice the time step can be made four times as large when bonds are constrained than
when they are oscillators [10]. GROMACS has this option for the bonds and bond angles.
The flexibility of the latter is rather essential to allow for the realistic motion and coverage
of configurational space [11].

Electrons are in the ground state
In MD we use a conservative force field that is a function of the positions of atoms only.
This means that the electronic motions are not considered: the electrons are supposed to
adjust their dynamics instantly when the atomic positions change (the Born-Oppenheimer
approximation), and remain in their ground state. This is really all right, almost always. But
of course, electron transfer processes and electronically excited states can not be treated.
Neither can chemical reactions be treated properly, but there are other reasons to shy away
from reactions for the time being.

Force fields are approximate
Force fields provide the forces. They are not really a part of the simulation method and
their parameters can be modified by the user as the need arises or knowledge improves.
But the form of the forces that can be used in a particular program is subject to limitations.
The force field that is incorporated in GROMACS is described in Chapter 4. In the present
version the force field is pair-additive (apart from long-range Coulomb forces), it cannot
incorporate polarizabilities, and it does not contain fine-tuning of bonded interactions. This
urges the inclusion of some limitations in this list below. For the rest it is quite useful and
fairly reliable for biologically-relevant macromolecules in aqueous solution!

The force field is pair-additive
This means that all non-bonded forces result from the sum of non-bonded pair interactions.
Non pair-additive interactions, the most important example of which is interaction through
atomic polarizability, are represented by effective pair potentials. Only average non pair-
additive contributions are incorporated. This also means that the pair interactions are not
pure, i.e., they are not valid for isolated pairs or for situations that differ appreciably from the
test systems on which the models were parameterized. In fact, the effective pair potentials
are not that bad in practice. But the omission of polarizability also means that electrons in
atoms do not provide a dielectric constant as they should. For example, real liquid alkanes
have a dielectric constant of slightly more than 2, which reduce the long-range electrostatic
interaction between (partial) charges. Thus, the simulations will exaggerate the long-range
Coulomb terms. Luckily, the next item compensates this effect a bit.

Long-range interactions are cut off
In this version, GROMACS always uses a cut-off radius for the Lennard-Jones interactions
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and sometimes for the Coulomb interactions as well. The “minimum-image convention”
used by GROMACS requires that only one image of each particle in the periodic boundary
conditions is considered for a pair interaction, so the cut-off radius cannot exceed half the
box size. That is still pretty big for large systems, and trouble is only expected for systems
containing charged particles. But then truly bad things can happen, like accumulation of
charges at the cut-off boundary or very wrong energies! For such systems, you should
consider using one of the implemented long-range electrostatic algorithms, such as particle-
mesh Ewald [12, 13].

Boundary conditions are unnatural
Since system size is small (even 10,000 particles is small), a cluster of particles will have a
lot of unwanted boundary with its environment (vacuum). We must avoid this condition if
we wish to simulate a bulk system. As such, we use periodic boundary conditions to avoid
real phase boundaries. Since liquids are not crystals, something unnatural remains. This
item is mentioned last because it is the least of the evils. For large systems, the errors are
small, but for small systems with a lot of internal spatial correlation, the periodic boundaries
may enhance internal correlation. In that case, beware of, and test, the influence of system
size. This is especially important when using lattice sums for long-range electrostatics, since
these are known to sometimes introduce extra ordering.

1.3 Energy Minimization and Search Methods

As mentioned in sec. 1.1, in many cases energy minimization is required. GROMACS provides a
number of methods for local energy minimization, as detailed in sec. 3.10.

The potential energy function of a (macro)molecular system is a very complex landscape (or hy-
persurface) in a large number of dimensions. It has one deepest point, the global minimum and
a very large number of local minima, where all derivatives of the potential energy function with
respect to the coordinates are zero and all second derivatives are non-negative. The matrix of
second derivatives, which is called the Hessian matrix, has non-negative eigenvalues; only the
collective coordinates that correspond to translation and rotation (for an isolated molecule) have
zero eigenvalues. In between the local minima there are saddle points, where the Hessian matrix
has only one negative eigenvalue. These points are the mountain passes through which the system
can migrate from one local minimum to another.

Knowledge of all local minima, including the global one, and of all saddle points would enable
us to describe the relevant structures and conformations and their free energies, as well as the
dynamics of structural transitions. Unfortunately, the dimensionality of the configurational space
and the number of local minima is so high that it is impossible to sample the space at a sufficient
number of points to obtain a complete survey. In particular, no minimization method exists that
guarantees the determination of the global minimum in any practical amount of time. Impractical
methods exist, some much faster than others [14]. However, given a starting configuration, it
is possible to find the nearest local minimum. “Nearest” in this context does not always imply
“nearest” in a geometrical sense (i.e., the least sum of square coordinate differences), but means the
minimum that can be reached by systematically moving down the steepest local gradient. Finding
this nearest local minimum is all that GROMACS can do for you, sorry! If you want to find other
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minima and hope to discover the global minimum in the process, the best advice is to experiment
with temperature-coupled MD: run your system at a high temperature for a while and then quench
it slowly down to the required temperature; do this repeatedly! If something as a melting or glass
transition temperature exists, it is wise to stay for some time slightly below that temperature and
cool down slowly according to some clever scheme, a process called simulated annealing. Since
no physical truth is required, you can use your imagination to speed up this process. One trick
that often works is to make hydrogen atoms heavier (mass 10 or so): although that will slow
down the otherwise very rapid motions of hydrogen atoms, it will hardly influence the slower
motions in the system, while enabling you to increase the time step by a factor of 3 or 4. You can
also modify the potential energy function during the search procedure, e.g. by removing barriers
(remove dihedral angle functions or replace repulsive potentials by soft-core potentials [15]), but
always take care to restore the correct functions slowly. The best search method that allows rather
drastic structural changes is to allow excursions into four-dimensional space [16], but this requires
some extra programming beyond the standard capabilities of GROMACS.

Three possible energy minimization methods are:

• Those that require only function evaluations. Examples are the simplex method and its
variants. A step is made on the basis of the results of previous evaluations. If derivative
information is available, such methods are inferior to those that use this information.

• Those that use derivative information. Since the partial derivatives of the potential energy
with respect to all coordinates are known in MD programs (these are equal to minus the
forces) this class of methods is very suitable as modification of MD programs.

• Those that use second derivative information as well. These methods are superior in their
convergence properties near the minimum: a quadratic potential function is minimized in
one step! The problem is that for N particles a 3N × 3N matrix must be computed, stored,
and inverted. Apart from the extra programming to obtain second derivatives, for most
systems of interest this is beyond the available capacity. There are intermediate methods
that build up the Hessian matrix on the fly, but they also suffer from excessive storage
requirements. So GROMACS will shy away from this class of methods.

The steepest descent method, available in GROMACS, is of the second class. It simply takes a
step in the direction of the negative gradient (hence in the direction of the force), without any
consideration of the history built up in previous steps. The step size is adjusted such that the
search is fast, but the motion is always downhill. This is a simple and sturdy, but somewhat
stupid, method: its convergence can be quite slow, especially in the vicinity of the local minimum!
The faster-converging conjugate gradient method (see e.g. [17]) uses gradient information from
previous steps. In general, steepest descents will bring you close to the nearest local minimum
very quickly, while conjugate gradients brings you very close to the local minimum, but performs
worse far away from the minimum. GROMACS also supports the L-BFGS minimizer, which is
mostly comparable to conjugate gradient method, but in some cases converges faster.
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Definitions and Units

2.1 Notation

The following conventions for mathematical typesetting are used throughout this document:
Item Notation Example
Vector Bold italic ri
Vector Length Italic ri

We define the lowercase subscripts i, j, k and l to denote particles: ri is the position vector of
particle i, and using this notation:

rij = rj − ri (2.1)

rij = |rij | (2.2)

The force on particle i is denoted by F i and

F ij = force on i exerted by j (2.3)

Please note that we changed notation as of version 2.0 to rij = rj − ri since this is the notation
commonly used. If you encounter an error, let us know.

2.2 MD units

GROMACS uses a consistent set of units that produce values in the vicinity of unity for most
relevant molecular quantities. Let us call them MD units. The basic units in this system are nm,
ps, K, electron charge (e) and atomic mass unit (u), see Table 2.1.

Consistent with these units are a set of derived units, given in Table 2.2.

The electric conversion factor f = 1
4πεo

= 138.935 485(9) kJ mol−1 nm e−2. It relates the
mechanical quantities to the electrical quantities as in

V = f
q2

r
or F = f

q2

r2
(2.4)



8 Chapter 2. Definitions and Units

Quantity Symbol Unit
length r nm = 10−9 m
mass m u (atomic mass unit) = 1.6605402(10)×10−27 kg

(1/12 the mass of a 12C atom)
1.6605402(10)× 10−27 kg

time t ps = 10−12 s
charge q e = electronic charge = 1.60217733(49)× 10−19 C
temperature T K

Table 2.1: Basic units used in GROMACS. Numbers in parentheses give accuracy.

Quantity Symbol Unit
energy E, V kJ mol−1

Force F kJ mol−1 nm−1

pressure p kJ mol−1 nm−3 = 1030/NAV Pa
1.660 54× 106 Pa = 16.6054 bar

velocity v nm ps−1 = 1000 m s−1

dipole moment µ e nm
electric potential Φ kJ mol−1 e−1 = 0.010 364 272(3) Volt
electric field E kJ mol−1 nm−1 e−1 = 1.036 427 2(3)× 107 V m−1

Table 2.2: Derived units

Electric potentials Φ and electric fieldsE are intermediate quantities in the calculation of energies
and forces. They do not occur inside GROMACS. If they are used in evaluations, there is a choice
of equations and related units. We strongly recommend following the usual practice of including
the factor f in expressions that evaluate Φ and E:

Φ(r) = f
∑
j

qj
|r − rj |

(2.5)

E(r) = f
∑
j

qj
(r − rj)
|r − rj |3

(2.6)

With these definitions, qΦ is an energy and qE is a force. The units are those given in Table 2.2:
about 10 mV for potential. Thus, the potential of an electronic charge at a distance of 1 nm equals
f ≈ 140 units ≈ 1.4 V. (exact value: 1.439965 V)

Note that these units are mutually consistent; changing any of the units is likely to produce incon-
sistencies and is therefore strongly discouraged! In particular: if Å are used instead of nm, the unit
of time changes to 0.1 ps. If kcal mol−1 (= 4.184 kJ mol−1) is used instead of kJ mol−1 for energy,
the unit of time becomes 0.488882 ps and the unit of temperature changes to 4.184 K. But in both
cases all electrical energies go wrong, because they will still be computed in kJ mol−1, expecting
nm as the unit of length. Although careful rescaling of charges may still yield consistency, it is
clear that such confusions must be rigidly avoided.

In terms of the MD units, the usual physical constants take on different values (see Table 2.3).
All quantities are per mol rather than per molecule. There is no distinction between Boltzmann’s
constant k and the gas constant R: their value is 0.008 314 51 kJ mol−1 K−1.
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Symbol Name Value
NAV Avogadro’s number 6.022 136 7(36)× 1023 mol−1

R gas constant 8.314 510(70)× 10−3 kJ mol−1 K−1

kB Boltzmann’s constant idem
h Planck’s constant 0.399 031 32(24) kJ mol−1 ps
h̄ Dirac’s constant 0.063 507 807(38) kJ mol−1 ps
c velocity of light 299 792.458 nm ps−1

Table 2.3: Some Physical Constants

Quantity Symbol Relation to SI
Length r∗ r σ−1

Mass m∗ m M−1

Time t∗ t σ−1
√
ε/M

Temperature T∗ kBT ε−1

Energy E∗ E ε−1

Force F∗ F σ ε−1

Pressure P∗ P σ3ε−1

Velocity v∗ v
√
M/ε

Density ρ∗ N σ3 V −1

Table 2.4: Reduced Lennard-Jones quantities

2.3 Reduced units

When simulating Lennard-Jones (LJ) systems, it might be advantageous to use reduced units (i.e.,
setting εii = σii = mi = kB = 1 for one type of atoms). This is possible. When specifying
the input in reduced units, the output will also be in reduced units. The one exception is the
temperature, which is expressed in 0.008 314 51 reduced units. This is a consequence of using
Boltzmann’s constant in the evaluation of temperature in the code. Thus not T , but kBT , is the
reduced temperature. A GROMACS temperature T = 1 means a reduced temperature of 0.008 . . .
units; if a reduced temperature of 1 is required, the GROMACS temperature should be 120.2717.

In Table 2.4 quantities are given for LJ potentials:

VLJ = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]

(2.7)



10 Chapter 2. Definitions and Units



Chapter 3

Algorithms

3.1 Introduction

In this chapter we first give describe some general concepts used in GROMACS: periodic bound-
ary conditions (sec. 3.2) and the group concept (sec. 3.3). The MD algorithm is described in
sec. 3.4: first a global form of the algorithm is given, which is refined in subsequent subsections.
The (simple) EM (Energy Minimization) algorithm is described in sec. 3.10. Some other algo-
rithms for special purpose dynamics are described after this.

A few issues are of general interest. In all cases the system must be defined, consisting of
molecules. Molecules again consist of particles with defined interaction functions. The detailed
description of the topology of the molecules and of the force field and the calculation of forces is
given in chapter 4. In the present chapter we describe other aspects of the algorithm, such as pair
list generation, update of velocities and positions, coupling to external temperature and pressure,
conservation of constraints. The analysis of the data generated by an MD simulation is treated in
chapter 8.

3.2 Periodic boundary conditions

The classical way to minimize edge effects in a finite system is to apply periodic boundary condi-
tions. The atoms of the system to be simulated are put into a space-filling box, which is surrounded
by translated copies of itself (Fig. 3.1). Thus there are no boundaries of the system; the artifact
caused by unwanted boundaries in an isolated cluster is now replaced by the artifact of periodic
conditions. If the system is crystalline, such boundary conditions are desired (although motions
are naturally restricted to periodic motions with wavelengths fitting into the box). If one wishes to
simulate non-periodic systems, such as liquids or solutions, the periodicity by itself causes errors.
The errors can be evaluated by comparing various system sizes; they are expected to be less severe
than the errors resulting from an unnatural boundary with vacuum.

There are several possible shapes for space-filling unit cells. Some, like the rhombic dodecahedron
and the truncated octahedron [18] are closer to being a sphere than a cube is, and are therefore
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Figure 3.1: Periodic boundary conditions in two dimensions.

better suited to the study of an approximately spherical macromolecule in solution, since fewer
solvent molecules are required to fill the box given a minimum distance between macromolecular
images. At the same time, rhombic dodecahedra and truncated octahedra are special cases of
triclinic unit cells; the most general space-filling unit cells that comprise all possible space-filling
shapes [19]. For this reason, GROMACS is based on the triclinic unit cell.

GROMACS uses periodic boundary conditions, combined with the minimum image convention:
only one – the nearest – image of each particle is considered for short-range non-bonded in-
teraction terms. For long-range electrostatic interactions this is not always accurate enough, and
GROMACS therefore also incorporates lattice sum methods such as Ewald Sum, PME and PPPM.

GROMACS supports triclinic boxes of any shape. The simulation box (unit cell) is defined by the
3 box vectors a,b and c. The box vectors must satisfy the following conditions:

ay = az = bz = 0 (3.1)

ax > 0, by > 0, cz > 0 (3.2)

|bx| ≤
1

2
ax, |cx| ≤

1

2
ax, |cy| ≤

1

2
by (3.3)

Equations 3.1 can always be satisfied by rotating the box. Inequalities (3.2) and (3.3) can always
be satisfied by adding and subtracting box vectors.

Even when simulating using a triclinic box, GROMACS always keeps the particles in a brick-
shaped volume for efficiency, as illustrated in Fig. 3.1 for a 2-dimensional system. Therefore,
from the output trajectory it might seem that the simulation was done in a rectangular box. The
program trjconv can be used to convert the trajectory to a different unit-cell representation.
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Figure 3.2: A rhombic dodecahedron and truncated octahedron (arbitrary orientations).

box type image box box vectors box vector angles
distance volume a b c 6 bc 6 ac 6 ab

d 0 0
cubic d d3 0 d 0 90◦ 90◦ 90◦

0 0 d

rhombic d 0 1
2 d

dodecahedron d 1
2

√
2 d3 0 d 1

2 d 60◦ 60◦ 90◦

(xy-square) 0.707 d3 0 0 1
2

√
2 d

rhombic d 1
2 d

1
2 d

dodecahedron d 1
2

√
2 d3 0 1

2

√
3 d 1

6

√
3 d 60◦ 60◦ 60◦

(xy-hexagon) 0.707 d3 0 0 1
3

√
6 d

truncated d 1
3 d −1

3 d

octahedron d 4
9

√
3 d3 0 2

3

√
2 d 1

3

√
2 d 71.53◦ 109.47◦ 71.53◦

0.770 d3 0 0 1
3

√
6 d

Table 3.1: The cubic box, the rhombic dodecahedron and the truncated octahedron.

It is also possible to simulate without periodic boundary conditions, but it is usually more efficient
to simulate an isolated cluster of molecules in a large periodic box, since fast grid searching can
only be used in a periodic system.

3.2.1 Some useful box types

The three most useful box types for simulations of solvated systems are described in Table 3.1.
The rhombic dodecahedron (Fig. 3.2) is the smallest and most regular space-filling unit cell. Each
of the 12 image cells is at the same distance. The volume is 71% of the volume of a cube having
the same image distance. This saves about 29% of CPU-time when simulating a spherical or
flexible molecule in solvent. There are two different orientations of a rhombic dodecahedron that
satisfy equations 3.1, 3.2 and 3.3. The program editconf produces the orientation which has
a square intersection with the xy-plane. This orientation was chosen because the first two box
vectors coincide with the x and y-axis, which is easier to comprehend. The other orientation can



14 Chapter 3. Algorithms

be useful for simulations of membrane proteins. In this case the cross-section with the xy-plane is
a hexagon, which has an area which is 14% smaller than the area of a square with the same image
distance. The height of the box (cz) should be changed to obtain an optimal spacing. This box
shape not only saves CPU time, it also results in a more uniform arrangement of the proteins.

3.2.2 Cut-off restrictions

The minimum image convention implies that the cut-off radius used to truncate non-bonded inter-
actions may not exceed half the shortest box vector:

Rc <
1

2
min(‖a‖, ‖b‖, ‖c‖), (3.4)

because otherwise more than one image would be within the cut-off distance of the force. When a
macromolecule, such as a protein, is studied in solution, this restriction alone is not sufficient: in
principle, a single solvent molecule should not be able to ‘see’ both sides of the macromolecule.
This means that the length of each box vector must exceed the length of the macromolecule in the
direction of that edge plus two times the cut-off radius Rc. It is, however, common to compromise
in this respect, and make the solvent layer somewhat smaller in order to reduce the computational
cost. For efficiency reasons the cut-off with triclinic boxes is more restricted. For grid search the
extra restriction is weak:

Rc < min(ax, by, cz) (3.5)

For simple search the extra restriction is stronger:

Rc <
1

2
min(ax, by, cz) (3.6)

Each unit cell (cubic, rectangular or triclinic) is surrounded by 26 translated images. A particular
image can therefore always be identified by an index pointing to one of 27 translation vectors and
constructed by applying a translation with the indexed vector (see 3.4.3). Restriction (3.5) ensures
that only 26 images need to be considered.

3.3 The group concept

The GROMACS MD and analysis programs use user-defined groups of atoms to perform certain
actions on. The maximum number of groups is 256, but each atom can only belong to six different
groups, one each of the following:

temperature-coupling group The temperature coupling parameters (reference temperature, time
constant, number of degrees of freedom, see 3.4.4) can be defined for each T-coupling group
separately. For example, in a solvated macromolecule the solvent (that tends to generate
more heating by force and integration errors) can be coupled with a shorter time constant to
a bath than is a macromolecule, or a surface can be kept cooler than an adsorbing molecule.
Many different T-coupling groups may be defined. See also center of mass groups below.
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freeze group Atoms that belong to a freeze group are kept stationary in the dynamics. This is
useful during equilibration, e.g. to avoid badly placed solvent molecules giving unreasonable
kicks to protein atoms, although the same effect can also be obtained by putting a restraining
potential on the atoms that must be protected. The freeze option can be used, if desired, on
just one or two coordinates of an atom, thereby freezing the atoms in a plane or on a line.
When an atom is partially frozen, constraints will still be able to move it, even in a frozen
direction. A fully frozen atom can not be moved by constraints. Many freeze groups can
be defined. Frozen coordinates are unaffected by pressure scaling; in some cases this can
produce unwanted results, particularly when constraints are also used (in this case you will
get very large pressures). Accordingly, it is recommended to avoid combining freeze groups
with constraints and pressure coupling. For the sake of equilibration it could suffice to
start with freezing in a constant volume simulation, and afterward use position restraints in
conjunction with constant pressure.

accelerate group On each atom in an “accelerate group” an acceleration ag is imposed. This
is equivalent to an external force. This feature makes it possible to drive the system into
a non-equilibrium state and enables the performance of non-equilibrium MD and hence to
obtain transport properties.

energy-monitor group Mutual interactions between all energy-monitor groups are compiled dur-
ing the simulation. This is done separately for Lennard-Jones and Coulomb terms. In prin-
ciple up to 256 groups could be defined, but that would lead to 256×256 items! Better use
this concept sparingly.

All non-bonded interactions between pairs of energy-monitor groups can be excluded (see
sec. 7.3). Pairs of particles from excluded pairs of energy-monitor groups are not put into the
pair list. This can result in a significant speedup for simulations where interactions within
or between parts of the system are not required.

center of mass group In GROMACS the center of mass (COM) motion can be removed, for
either the complete system or for groups of atoms. The latter is useful, e.g. for systems
where there is limited friction (e.g. gas systems) to prevent center of mass motion to occur.
It makes sense to use the same groups for temperature coupling and center of mass motion
removal.

Compressed position output group In order to further reduce the size of the compressed tra-
jectory file (.xtc or .tng), it is possible to store only a subset of all particles. All x-
compression groups that are specified are saved, the rest are not. If no such groups are
specified, than all atoms are saved to the compressed trajectory file.

The use of groups in GROMACS tools is described in sec. 8.1.

3.4 Molecular Dynamics

A global flow scheme for MD is given in Fig. 3.3. Each MD or EM run requires as input a set of
initial coordinates and – optionally – initial velocities of all particles involved. This chapter does
not describe how these are obtained; for the setup of an actual MD run check the online manual at
www.gromacs.org.

http://www.gromacs.org
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THE GLOBAL MD ALGORITHM

1. Input initial conditions

Potential interaction V as a function of atom positions
Positions r of all atoms in the system
Velocities v of all atoms in the system

⇓

repeat 2,3,4 for the required number of steps:

2. Compute forces

The force on any atom

F i = −∂V
∂ri

is computed by calculating the force between non-bonded atom
pairs:

F i =
∑
j F ij

plus the forces due to bonded interactions (which may depend on 1,
2, 3, or 4 atoms), plus restraining and/or external forces.

The potential and kinetic energies and the pressure tensor may be
computed.
⇓

3. Update configuration

The movement of the atoms is simulated by numerically solving
Newton’s equations of motion

d2ri
dt2

=
F i

mior
dri
dt

= vi;
dvi
dt

=
F i

mi

⇓
4. if required: Output step

write positions, velocities, energies, temperature, pressure, etc.

Figure 3.3: The global MD algorithm
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Velocity

Figure 3.4: A Maxwell-Boltzmann velocity distribution, generated from random numbers.

3.4.1 Initial conditions

Topology and force field

The system topology, including a description of the force field, must be read in. Force fields and
topologies are described in chapter 4 and 5, respectively. All this information is static; it is never
modified during the run.

Coordinates and velocities

Then, before a run starts, the box size and the coordinates and velocities of all particles are re-
quired. The box size and shape is determined by three vectors (nine numbers) b1, b2, b3, which
represent the three basis vectors of the periodic box.

If the run starts at t = t0, the coordinates at t = t0 must be known. The leap-frog algorithm, the
default algorithm used to update the time step with ∆t (see 3.4.4), also requires that the velocities
at t = t0− 1

2∆t are known. If velocities are not available, the program can generate initial atomic
velocities vi, i = 1 . . . 3N with a (Fig. 3.4) at a given absolute temperature T :

p(vi) =

√
mi

2πkT
exp

(
−miv

2
i

2kT

)
(3.7)
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where k is Boltzmann’s constant (see chapter 2). To accomplish this, normally distributed random
numbers are generated by adding twelve random numbers Rk in the range 0 ≤ Rk < 1 and
subtracting 6.0 from their sum. The result is then multiplied by the standard deviation of the
velocity distribution

√
kT/mi. Since the resulting total energy will not correspond exactly to the

required temperature T , a correction is made: first the center-of-mass motion is removed and then
all velocities are scaled so that the total energy corresponds exactly to T (see eqn. 3.18).

Center-of-mass motion

The center-of-mass velocity is normally set to zero at every step; there is (usually) no net external
force acting on the system and the center-of-mass velocity should remain constant. In practice,
however, the update algorithm introduces a very slow change in the center-of-mass velocity, and
therefore in the total kinetic energy of the system – especially when temperature coupling is used.
If such changes are not quenched, an appreciable center-of-mass motion can develop in long runs,
and the temperature will be significantly misinterpreted. Something similar may happen due to
overall rotational motion, but only when an isolated cluster is simulated. In periodic systems with
filled boxes, the overall rotational motion is coupled to other degrees of freedom and does not
cause such problems.

3.4.2 Neighbor searching

As mentioned in chapter 4, internal forces are either generated from fixed (static) lists, or from
dynamic lists. The latter consist of non-bonded interactions between any pair of particles. When
calculating the non-bonded forces, it is convenient to have all particles in a rectangular box. As
shown in Fig. 3.1, it is possible to transform a triclinic box into a rectangular box. The output
coordinates are always in a rectangular box, even when a dodecahedron or triclinic box was used
for the simulation. Equation 3.1 ensures that we can reset particles in a rectangular box by first
shifting them with box vector c, then with b and finally with a. Equations 3.3, 3.4 and 3.5 ensure
that we can find the 14 nearest triclinic images within a linear combination that does not involve
multiples of box vectors.

Pair lists generation

The non-bonded pair forces need to be calculated only for those pairs i, j for which the distance
rij between i and the nearest image of j is less than a given cut-off radiusRc. Some of the particle
pairs that fulfill this criterion are excluded, when their interaction is already fully accounted for by
bonded interactions. GROMACS employs a pair list that contains those particle pairs for which
non-bonded forces must be calculated. The pair list contains atoms i, a displacement vector for
atom i, and all particles j that are within rlist of this particular image of atom i. The list is
updated every nstlist steps, where nstlist is typically 10. There is an option to calculate
the total non-bonded force on each particle due to all particle in a shell around the list cut-off, i.e.
at a distance between rlist and rlistlong. This force is calculated during the pair list update
and retained during nstlist steps.

To make the neighbor list, all particles that are close (i.e. within the neighbor list cut-off) to a given
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particle must be found. This searching, usually called neighbor search (NS) or pair search, involves
periodic boundary conditions and determining the image (see sec. 3.2). The search algorithm is
O(N), although a simpler O(N2) algorithm is still available under some conditions.

Cut-off schemes: group versus Verlet

From version 4.6, GROMACS supports two different cut-off scheme setups: the original one
based on atom groups and one using a Verlet buffer. There are some important differences that
affect results, performance and feature support. The group scheme can be made to work (almost)
like the Verlet scheme, but this will lead to a decrease in performance. The group scheme is
especially fast for water molecules, which are abundant in many simulations, but on the most
recent x86 processors, this advantage is negated by the better instruction-level parallelism available
in the Verlet-scheme implementation. The group scheme is deprecated in version 5.0, and will be
removed in a future version.

In the group scheme, a neighbor list is generated consisting of pairs of groups of at least one
atom. These groups were originally charge groups (see sec. 3.4.2), but with a proper treatment
of long-range electrostatics, performance is their only advantage. A pair of groups is put into the
neighbor list when their center of geometry is within the cut-off distance. Interactions between all
atom pairs (one from each charge group) are calculated for a certain number of MD steps, until
the neighbor list is updated. This setup is efficient, as the neighbor search only checks distance
between charge group pair, not atom pairs (saves a factor of 3 × 3 = 9 with a three-atom water
model) and the non-bonded force kernels can be optimized for, say, a water molecule “group”.
Without explicit buffering, this setup leads to energy drift as some atom pairs which are within the
cut-off don’t interact and some outside the cut-off do interact. This can be caused by

• atoms moving across the cut-off between neighbor search steps, and/or

• for charge groups consisting of more than one atom, atom pairs moving in/out of the cut-off
when their charge group center of geometry distance is outside/inside of the cut-off.

Explicitly adding a buffer to the neighbor list will remove such artifacts, but this comes at a high
computational cost. How severe the artifacts are depends on the system, the properties in which
you are interested, and the cut-off setup.

The Verlet cut-off scheme uses a buffered pair list by default. It also uses clusters of atoms, but
these are not static as in the group scheme. Rather, the clusters are defined spatially and consist
of 4 or 8 atoms, which is convenient for stream computing, using e.g. SSE, AVX or CUDA on
GPUs. At neighbor search steps, a pair list is created with a Verlet buffer, ie. the pair-list cut-off
is larger than the interaction cut-off. In the non-bonded force kernels, forces are only added when
an atom pair is within the cut-off distance at that particular time step. This ensures that as atoms
move between pair search steps, forces between nearly all atoms within the cut-off distance are
calculated. We say nearly all atoms, because GROMACS uses a fixed pair list update frequency
for efficiency. An atom-pair, whose distance was outside the cut-off, could possibly move enough
during this fixed number of steps that its distance is now within the cut-off. This small chance
results in a small energy drift, and the size of the chance depends on the temperature. When
temperature coupling is used, the buffer size can be determined automatically, given a certain
tolerance on the energy drift.
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The mdp file settings specific to the Verlet scheme are:

cutoff-scheme = Verlet
verlet-buffer-tolerance = 0.005

The Verlet buffer size is determined from the latter option, which is by default set to 0.005
kJ/mol/ps pair energy error per atom. Note that errors in pair energies cancel and the effect on
the total energy drift is usually at least an order of magnitude smaller than the tolerance. Further-
more, the drift of the total energy is affected by many other factors; often, the contribution from
the constraint algorithm dominates.

For constant-energy (NVE) simulations, the buffer size will be inferred from the temperature that
corresponds to the velocities (either those generated, if applicable, or those found in the input
configuration). Alternatively, the tolerance can be set to -1 and a buffer set manually by specifying
rlist > max(rcoulomb, rvdw). The simplest way to get a reasonable buffer size is to use
an NVT mdp file with the target temperature set to what you expect in your NVE simulation, and
transfer the buffer size printed by grompp to your NVE mdp file.

The Verlet cut-off scheme is implemented in a very efficient fashion based on clusters of particles.
The simplest example is a cluster size of 4 particles. The pair list is then constructed based on
cluster pairs. The cluster-pair search is much faster searching based on particle pairs, because
4 × 4 = 16 particle pairs are put in the list at once. The non-bonded force calculation kernel can
then calculate all 16 particle-pair interactions at once, which maps nicely to SIMD units which
can perform multiple floating operations at once (e.g. SSE, AVX, CUDA on GPUs, BlueGene
FPUs). These non-bonded kernels are much faster than the kernels used in the group scheme for
most types of systems, except for water molecules on processors with short SIMD widths when
not using a buffered pair list. This latter case is common for (bio-)molecular simulations, so for
greatest speed, it is worth comparing the performance of both schemes.

As the Verlet cut-off scheme was introduced in version 4.6, not all features of the group scheme
are supported yet. The Verlet scheme supports a few new features which the group scheme does
not support. A list of features not (fully) supported in both cut-off schemes is given in Table 3.2.

Energy drift and pair-list buffering

For a canonical (NVT) ensemble, the average energy error caused by the finite Verlet buffer size
can be determined from the atomic displacements and the shape of the potential at the cut-off.
The displacement distribution along one dimension for a freely moving particle with mass m
over time t at temperature T is Gaussian with zero mean and variance σ2 = t kBT/m. For the
distance between two atoms, the variance changes to σ2 = σ2

12 = t kBT (1/m1 + 1/m2). Note
that in practice particles usually interact with other particles over time t and therefore the real
displacement distribution is much narrower. Given a non-bonded interaction cut-off distance of rc
and a pair-list cut-off r` = rc + rb, we can then write the average energy error after time t for pair
interactions between one particle of type 1 surrounded by particles of type 2 with number density
ρ2, when the inter particle distance changes from r0 to rt, as:

〈∆V 〉 =

∫ rc

0

∫ ∞
r`

4πr2
0ρ2V (rt)G

(
rt − r0

σ

)
dr0 drt (3.8)
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Non-bonded interaction feature group Verlet
unbuffered cut-off scheme

√
not by default

exact cut-off shift/switch
√

shifted interactions force+energy energy
switched potential

√ √

switched forces
√ √

non-periodic systems
√

Z + walls
implicit solvent

√

free energy perturbed non-bondeds
√ √

group energy contributions
√

CPU (not on GPU)
energy group exclusions

√

AdResS multi-scale
√

OpenMP multi-threading only PME
√

native GPU support
√

Lennard-Jones PME
√ √

Table 3.2: Differences (only) in the support of non-bonded features between the group and Verlet
cut-off schemes.

≈
∫ rc

−∞

∫ ∞
r`

4πr2
0ρ2

[
V ′(rc)(rt − rc) +

V ′′(rc)
1

2
(rt − rc)2

]
G

(
rt − r0

σ

)
dr0 drt (3.9)

≈ 4π(r` + σ)2ρ2

∫ rc

−∞

∫ ∞
r`

[
V ′(rc)(rt − rc) +

V ′′(rc)
1

2
(rt − rc)2 +

V ′′′(rc)
1

6
(rt − rc)3

]
G

(
rt − r0

σ

)
dr0 drt (3.10)

= 4π(r` + σ)2ρ2

{
1

2
V ′(rc)

[
rbσG

(
rb
σ

)
− (r2

b + σ2)E

(
rb
σ

)]
+

1

6
V ′′(rc)

[
σ(r2

b + 2σ2)G

(
rb
σ

)
− rb(r2

b + 3σ2)E

(
rb
σ

)]
+

1

24
V ′′′(rc)

[
rbσ(r2

b + 5σ2)G

(
rb
σ

)
− (r4

b + 6r2
bσ

2 + 3σ4)E

(
rb
σ

)]}
(3.11)

where G is a Gaussian distribution with 0 mean and unit variance and E(x) = 1
2erfc(x/

√
2).

We always want to achieve small energy error, so σ will be small compared to both rc and r`,
thus the approximations in the equations above are good, since the Gaussian distribution decays
rapidly. The energy error needs to be averaged over all particle pair types and weighted with
the particle counts. In GROMACS we don’t allow cancellation of error between pair types, so
we average the absolute values. To obtain the average energy error per unit time, it needs to be
divided by the neighbor-list life time t = (nstlist− 1)× dt. This function can not be inverted
analytically, so we use bisection to obtain the buffer size rb for a target drift. Again we note that in
practice the error we usually be much smaller than this estimate, as in the condensed phase particle
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displacements will be much smaller than for freely moving particles, which is the assumption used
here.

When (bond) constraints are present, some particles will have fewer degrees of freedom. This will
reduce the energy errors. The displacement in an arbitrary direction of a particle with 2 degrees of
freedom is not Gaussian, but rather follows the complementary error function:

√
π

2
√

2σ
erfc

( |r|√
2σ

)
(3.12)

where σ2 is again kBT/m. This distribution can no longer be integrated analytically to obtain
the energy error. But we can generate a tight upper bound using a scaled and shifted Gaussian
distribution (not shown). This Gaussian distribution can then be used to calculate the energy error
as described above. We consider particles constrained, i.e. having 2 degrees of freedom or fewer,
when they are connected by constraints to particles with a total mass of at least 1.5 times the mass
of the particles itself. For a particle with a single constraint this would give a total mass along the
constraint direction of at least 2.5, which leads to a reduction in the variance of the displacement
along that direction by at least a factor of 6.25. As the Gaussian distribution decays very rapidly,
this effectively removes one degree of freedom from the displacement. Multiple constraints would
reduce the displacement even more, but as this gets very complex, we consider those as particles
with 2 degrees of freedom.

There is one important implementation detail that reduces the energy errors caused by the finite
Verlet buffer list size. The derivation above assumes a particle pair-list. However, the GROMACS
implementation uses a cluster pair-list for efficiency. The pair list consists of pairs of clusters of
4 particles in most cases, also called a 4 × 4 list, but the list can also be 4 × 8 (GPU CUDA
kernels and AVX 256-bit single precision kernels) or 4 × 2 (SSE double-precision kernels). This
means that the pair-list is effectively much larger than the corresponding 1 × 1 list. Thus slightly
beyond the pair-list cut-off there will still be a large fraction of particle pairs present in the list.
This fraction can be determined in a simulation and accurately estimated under some reasonable
assumptions. The fraction decreases with increasing pair-list range, meaning that a smaller buffer
can be used. For typical all-atom simulations with a cut-off of 0.9 nm this fraction is around 0.9,
which gives a reduction in the energy errors of a factor of 10. This reduction is taken into account
during the automatic Verlet buffer calculation and results in a smaller buffer size.

In Fig. 3.5 one can see that for small buffer sizes the drift of the total energy is much smaller
than the pair energy error tolerance, due to cancellation of errors. For larger buffer size, the error
estimate is a factor of 6 higher than drift of the total energy, or alternatively the buffer estimate is
0.024 nm too large. This is because the protons don’t move freely over 18 fs, but rather vibrate.

Cut-off artifacts and switched interactions

With the Verlet scheme, the pair potentials are shifted to be zero at the cut-off, which makes the
potential the integral of the force. This is only possible in the group scheme if the shape of the
potential is such that its value is zero at the cut-off distance. However, there can still be energy
drift when the forces are non-zero at the cut-off. This effect is extremely small and often not
noticeable, as other integration errors (e.g. from constraints) may dominate. To completely avoid
cut-off artifacts, the non-bonded forces can be switched exactly to zero at some distance smaller
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Figure 3.5: Energy drift per atom for an SPC/E water system at 300K with a time step of 2 fs and
a pair-list update period of 10 steps (pair-list life time: 18 fs). PME was used with ewald-rtol
set to 10−5; this parameter affects the shape of the potential at the cut-off. Error estimates due to
finite Verlet buffer size are shown for a 1 × 1 atom pair list and 4 × 4 atom pair list without and
with (dashed line) cancellation of positive and negative errors. Real energy drift is shown for sim-
ulations using double- and mixed-precision settings. Rounding errors in the SETTLE constraint
algorithm from the use of single precision causes the drift to become negative at large buffer size.
Note that at zero buffer size, the real drift is small because positive (H-H) and negative (O-H)
energy errors cancel.
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Figure 3.6: Grid search in two dimensions. The arrows are the box vectors.

than the neighbor list cut-off (there are several ways to do this in GROMACS, see sec. 4.1.5). One
then has a buffer with the size equal to the neighbor list cut-off less the longest interaction cut-off.

With the group cut-off scheme, one can also choose to let mdrun only update the neighbor list
when required. That is when one or more particles have moved more than half the buffer size from
the center of geometry of the charge group to which they belong (see sec. 3.4.2), as determined
at the previous neighbor search. This option guarantees that there are no cut-off artifacts. Note
that for larger systems this comes at a high computational cost, since the neighbor list update
frequency will be determined by just one or two particles moving slightly beyond the half buffer
length (which not even necessarily implies that the neighbor list is invalid), while 99.99% of the
particles are fine.

Simple search

Due to eqns. 3.1 and 3.6, the vector rij connecting images within the cut-off Rc can be found by
constructing:

r′′′ = rj − ri (3.13)

r′′ = r′′′ − c ∗ round(r′′′z /cz) (3.14)

r′ = r′′ − b ∗ round(r′′y/by) (3.15)

rij = r′ − a ∗ round(r′x/ax) (3.16)

When distances between two particles in a triclinic box are needed that do not obey eqn. 3.1, many
shifts of combinations of box vectors need to be considered to find the nearest image.

Grid search

The grid search is schematically depicted in Fig. 3.6. All particles are put on the NS grid, with the
smallest spacing ≥ Rc/2 in each of the directions. In the direction of each box vector, a particle
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i has three images. For each direction the image may be -1,0 or 1, corresponding to a translation
over -1, 0 or +1 box vector. We do not search the surrounding NS grid cells for neighbors of
i and then calculate the image, but rather construct the images first and then search neighbors
corresponding to that image of i. As Fig. 3.6 shows, some grid cells may be searched more than
once for different images of i. This is not a problem, since, due to the minimum image convention,
at most one image will “see” the j-particle. For every particle, fewer than 125 (53) neighboring
cells are searched. Therefore, the algorithm scales linearly with the number of particles. Although
the prefactor is large, the scaling behavior makes the algorithm far superior over the standard
O(N2) algorithm when there are more than a few hundred particles. The grid search is equally
fast for rectangular and triclinic boxes. Thus for most protein and peptide simulations the rhombic
dodecahedron will be the preferred box shape.

Charge groups

Charge groups were originally introduced to reduce cut-off artifacts of Coulomb interactions.
When a plain cut-off is used, significant jumps in the potential and forces arise when atoms with
(partial) charges move in and out of the cut-off radius. When all chemical moieties have a net
charge of zero, these jumps can be reduced by moving groups of atoms with net charge zero,
called charge groups, in and out of the neighbor list. This reduces the cut-off effects from the
charge-charge level to the dipole-dipole level, which decay much faster. With the advent of full
range electrostatics methods, such as particle-mesh Ewald (sec. 4.8.2), the use of charge groups
is no longer required for accuracy. It might even have a slight negative effect on the accuracy or
efficiency, depending on how the neighbor list is made and the interactions are calculated.

But there is still an important reason for using “charge groups”: efficiency with the group cut-off
scheme. Where applicable, neighbor searching is carried out on the basis of charge groups which
are defined in the molecular topology. If the nearest image distance between the geometrical
centers of the atoms of two charge groups is less than the cut-off radius, all atom pairs between
the charge groups are included in the pair list. The neighbor searching for a water system, for
instance, is 32 = 9 times faster when each molecule is treated as a charge group. Also the highly
optimized water force loops (see sec. B.2.1) only work when all atoms in a water molecule form
a single charge group. Currently the name neighbor-search group would be more appropriate, but
the name charge group is retained for historical reasons. When developing a new force field, the
advice is to use charge groups of 3 to 4 atoms for optimal performance. For all-atom force fields
this is relatively easy, as one can simply put hydrogen atoms, and in some case oxygen atoms, in
the same charge group as the heavy atom they are connected to; for example: CH3, CH2, CH,
NH2, NH, OH, CO2, CO.

With the Verlet cut-off scheme, charge groups are ignored.

3.4.3 Compute forces

Potential energy

When forces are computed, the potential energy of each interaction term is computed as well. The
total potential energy is summed for various contributions, such as Lennard-Jones, Coulomb, and
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bonded terms. It is also possible to compute these contributions for energy-monitor groups of
atoms that are separately defined (see sec. 3.3).

Kinetic energy and temperature

The temperature is given by the total kinetic energy of the N -particle system:

Ekin =
1

2

N∑
i=1

miv
2
i (3.17)

From this the absolute temperature T can be computed using:

1

2
NdfkT = Ekin (3.18)

where k is Boltzmann’s constant and Ndf is the number of degrees of freedom which can be
computed from:

Ndf = 3N −Nc −Ncom (3.19)

HereNc is the number of constraints imposed on the system. When performing molecular dynam-
ics Ncom = 3 additional degrees of freedom must be removed, because the three center-of-mass
velocities are constants of the motion, which are usually set to zero. When simulating in vacuo,
the rotation around the center of mass can also be removed, in this case Ncom = 6. When more
than one temperature-coupling group is used, the number of degrees of freedom for group i is:

N i
df = (3N i −N i

c)
3N −Nc −Ncom

3N −Nc
(3.20)

The kinetic energy can also be written as a tensor, which is necessary for pressure calculation in a
triclinic system, or systems where shear forces are imposed:

Ekin =
1

2

N∑
i

mivi ⊗ vi (3.21)

Pressure and virial

The pressure tensor P is calculated from the difference between kinetic energy Ekin and the virial
Ξ:

P =
2

V
(Ekin −Ξ) (3.22)

where V is the volume of the computational box. The scalar pressure P , which can be used for
pressure coupling in the case of isotropic systems, is computed as:

P = trace(P)/3 (3.23)

The virial Ξ tensor is defined as:

Ξ = −1

2

∑
i<j

rij ⊗ F ij (3.24)

The GROMACS implementation of the virial computation is described in sec. B.1.
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Figure 3.7: The Leap-Frog integration method. The algorithm is called Leap-Frog because r and
v are leaping like frogs over each other’s backs.

3.4.4 The leap-frog integrator

The default MD integrator in GROMACS is the so-called leap-frog algorithm [20] for the inte-
gration of the equations of motion. When extremely accurate integration with temperature and/or
pressure coupling is required, the velocity Verlet integrators are also present and may be preferable
(see 3.4.5). The leap-frog algorithm uses positions r at time t and velocities v at time t− 1

2∆t; it
updates positions and velocities using the forces F (t) determined by the positions at time t using
these relations:

v(t+
1

2
∆t) = v(t− 1

2
∆t) +

∆t

m
F (t) (3.25)

r(t+ ∆t) = r(t) + ∆tv(t+
1

2
∆t) (3.26)

The algorithm is visualized in Fig. 3.7. It produces trajectories that are identical to the Verlet [21]
algorithm, whose position-update relation is

r(t+ ∆t) = 2r(t)− r(t−∆t) +
1

m
F (t)∆t2 +O(∆t4) (3.27)

The algorithm is of third order in r and is time-reversible. See ref. [22] for the merits of this
algorithm and comparison with other time integration algorithms.

The equations of motion are modified for temperature coupling and pressure coupling, and ex-
tended to include the conservation of constraints, all of which are described below.

3.4.5 The velocity Verlet integrator

The velocity Verlet algorithm [23] is also implemented in GROMACS, though it is not yet fully
integrated with all sets of options. In velocity Verlet, positions r and velocities v at time t are used
to integrate the equations of motion; velocities at the previous half step are not required.

v(t+
1

2
∆t) = v(t) +

∆t

2m
F (t) (3.28)

r(t+ ∆t) = r(t) + ∆tv(t+
1

2
∆t) (3.29)

v(t+ ∆t) = v(t+
1

2
∆t) +

∆t

2m
F (t+ ∆t) (3.30)
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or, equivalently,

r(t+ ∆t) = r(t) + ∆tv +
∆t2

2m
F (t) (3.31)

v(t+ ∆t) = v(t) +
∆t

2m
[F (t) + F (t+ ∆t)] (3.32)

With no temperature or pressure coupling, and with corresponding starting points, leap-frog and
velocity Verlet will generate identical trajectories, as can easily be verified by hand from the equa-
tions above. Given a single starting file with the same starting point x(0) and v(0), leap-frog
and velocity Verlet will not give identical trajectories, as leap-frog will interpret the velocities as
corresponding to t = −1

2∆t, while velocity Verlet will interpret them as corresponding to the
timepoint t = 0.

3.4.6 Understanding reversible integrators: The Trotter decomposition

To further understand the relationship between velocity Verlet and leap-frog integration, we intro-
duce the reversible Trotter formulation of dynamics, which is also useful to understanding imple-
mentations of thermostats and barostats in GROMACS.

A system of coupled, first-order differential equations can be evolved from time t = 0 to time t by
applying the evolution operator

Γ(t) = exp(iLt)Γ(0)

iL = Γ̇ · ∇Γ, (3.33)

where L is the Liouville operator, and Γ is the multidimensional vector of independent variables
(positions and velocities). A short-time approximation to the true operator, accurate at time ∆t =
t/P , is applied P times in succession to evolve the system as

Γ(t) =
P∏
i=1

exp(iL∆t)Γ(0) (3.34)

For NVE dynamics, the Liouville operator is

iL =
N∑
i=1

vi · ∇ri +
N∑
i=1

1

mi
F (ri) · ∇vi . (3.35)

This can be split into two additive operators

iL1 =
N∑
i=1

1

mi
F (ri) · ∇vi

iL2 =
N∑
i=1

vi · ∇ri (3.36)

Then a short-time, symmetric, and thus reversible approximation of the true dynamics will be

exp(iL∆t) = exp(iL2
1

2
∆t) exp(iL1∆t) exp(iL2

1

2
∆t) +O(∆t3). (3.37)
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This corresponds to velocity Verlet integration. The first exponential term over 1
2∆t corresponds

to a velocity half-step, the second exponential term over ∆t corresponds to a full velocity step,
and the last exponential term over 1

2∆t is the final velocity half step. For future times t = n∆t,
this becomes

exp(iLn∆t) ≈
(

exp(iL2
1

2
∆t) exp(iL1∆t) exp(iL2

1

2
∆t)

)n
≈ exp(iL2

1

2
∆t)

(
exp(iL1∆t) exp(iL2∆t)

)n−1

exp(iL1∆t) exp(iL2
1

2
∆t) (3.38)

This formalism allows us to easily see the difference between the different flavors of Verlet inte-
grators. The leap-frog integrator can be seen as starting with Eq. 3.37 with the exp (iL1∆t) term,
instead of the half-step velocity term, yielding

exp(iLn∆t) = exp (iL1∆t) exp (iL2∆t) +O(∆t3). (3.39)

Here, the full step in velocity is between t − 1
2∆t and t + 1

2∆t, since it is a combination of the
velocity half steps in velocity Verlet. For future times t = n∆t, this becomes

exp(iLn∆t) ≈
(

exp (iL1∆t) exp (iL2∆t)

)n
. (3.40)

Although at first this does not appear symmetric, as long as the full velocity step is between t− 1
2∆t

and t+ 1
2∆t, then this is simply a way of starting velocity Verlet at a different place in the cycle.

Even though the trajectory and thus potential energies are identical between leap-frog and velocity
Verlet, the kinetic energy and temperature will not necessarily be the same. Standard velocity
Verlet uses the velocities at the t to calculate the kinetic energy and thus the temperature only at
time t; the kinetic energy is then a sum over all particles

KEfull(t) =
∑
i

(
1

2mi
vi(t)

)2

=
∑
i

1

2mi

(
1

2
vi(t−

1

2
∆t) +

1

2
vi(t+

1

2
∆t)

)2

, (3.41)

with the square on the outside of the average. Standard leap-frog calculates the kinetic energy at
time t based on the average kinetic energies at the timesteps t+ 1

2∆t and t− 1
2∆t, or the sum over

all particles

KEaverage(t) =
∑
i

1

2mi

(
1

2
vi(t−

1

2
∆t)2 +

1

2
vi(t+

1

2
∆t)2

)
, (3.42)

where the square is inside the average.

A non-standard variant of velocity Verlet which averages the kinetic energies KE(t + 1
2∆t) and

KE(t − 1
2∆t), exactly like leap-frog, is also now implemented in GROMACS (as .mdp file

option md-vv-avek). Without temperature and pressure coupling, velocity Verlet with half-
step-averaged kinetic energies and leap-frog will be identical up to numerical precision. For
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temperature- and pressure-control schemes, however, velocity Verlet with half-step-averaged ki-
netic energies and leap-frog will be different, as will be discussed in the section in thermostats and
barostats.

The half-step-averaged kinetic energy and temperature are slightly more accurate for a given step
size; the difference in average kinetic energies using the half-step-averaged kinetic energies (md
and md-vv-avek) will be closer to the kinetic energy obtained in the limit of small step size than
will the full-step kinetic energy (using md-vv). For NVE simulations, this difference is usually not
significant, since the positions and velocities of the particles are still identical; it makes a difference
in the way the the temperature of the simulations are interpreted, but not in the trajectories that
are produced. Although the kinetic energy is more accurate with the half-step-averaged method,
meaning that it changes less as the timestep gets large, it is also more noisy. The RMS deviation
of the total energy of the system (sum of kinetic plus potential) in the half-step-averaged kinetic
energy case will be higher (about twice as high in most cases) than the full-step kinetic energy.
The drift will still be the same, however, as again, the trajectories are identical.

For NVT simulations, however, there will be a difference, as discussed in the section on temper-
ature control, since the velocities of the particles are adjusted such that kinetic energies of the
simulations, which can be calculated either way, reach the distribution corresponding to the set
temperature. In this case, the three methods will not give identical results.

Because the velocity and position are both defined at the same time t the velocity Verlet integrator
can be used for some methods, especially rigorously correct pressure control methods, that are not
actually possible with leap-frog. The integration itself takes negligibly more time than leap-frog,
but twice as many communication calls are currently required. In most cases, and especially for
large systems where communication speed is important for parallelization and differences between
thermodynamic ensembles vanish in the 1/N limit, and when only NVT ensembles are required,
leap-frog will likely be the preferred integrator. For pressure control simulations where the fine
details of the thermodynamics are important, only velocity Verlet allows the true ensemble to be
calculated. In either case, simulation with double precision may be required to get fine details of
thermodynamics correct.

3.4.7 Twin-range cut-offs

To save computation time, slowly varying forces can be calculated less often than rapidly varying
forces. In GROMACS such a multiple time step splitting is possible between short and long range
non-bonded interactions. In GROMACS versions up to 4.0, an irreversible integration scheme was
used which is also used by the GROMOS simulation package: every n steps the long range forces
are determined and these are then also used (without modification) for the next n − 1 integration
steps in eqn. 3.25. Such an irreversible scheme can result in bad energy conservation and, possi-
bly, bad sampling. Since version 4.5, a leap-frog version of the reversible Trotter decomposition
scheme [24] is used. In this integrator the long-range forces are determined every n steps and are
then integrated into the velocity in eqn. 3.25 using a time step of ∆tLR = n∆t:

v(t+
1

2
∆t) =


v(t− 1

2
∆t) +

1

m
[F SR(t) + nF LR(t)] ∆t , step % n = 0

v(t− 1

2
∆t) +

1

m
F SR(t)∆t , step % n 6= 0

(3.43)
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Figure 3.8: Energy drift per degree of freedom in SPC/E water with twin-range cut-offs for re-
action field (left) and Lennard-Jones interaction (right) as a function of the long-range time step
length for the irreversible “GROMOS” scheme and a reversible Trotter scheme.

The parameter n is equal to the neighbor list update frequency. In 4.5, the velocity Verlet version
of multiple time-stepping is not yet fully implemented.

Several other simulation packages uses multiple time stepping for bonds and/or the PME mesh
forces. In GROMACS we have not implemented this (yet), since we use a different philosophy.
Bonds can be constrained (which is also a more sound approximation of a physical quantum
oscillator), which allows the smallest time step to be increased to the larger one. This not only
halves the number of force calculations, but also the update calculations. For even larger time
steps, angle vibrations involving hydrogen atoms can be removed using virtual interaction sites
(see sec. 6.8), which brings the shortest time step up to PME mesh update frequency of a multiple
time stepping scheme.

As an example we show the energy conservation for integrating the equations of motion for SPC/E
water at 300 K. To avoid cut-off effects, reaction-field electrostatics with εRF = ∞ and shifted
Lennard-Jones interactions are used, both with a buffer region. The long-range interactions were
evaluated between 1.0 and 1.4 nm. In Fig. 3.7 one can see that for electrostatics the Trotter scheme
does an order of magnitude better up to ∆tLR = 16 fs. The electrostatics depends strongly on the
orientation of the water molecules, which changes rapidly. For Lennard-Jones interactions, the
energy drift is linear in ∆tLR and roughly two orders of magnitude smaller than for the electro-
statics. Lennard-Jones forces are smaller than Coulomb forces and they are mainly affected by
translation of water molecules, not rotation.

3.4.8 Temperature coupling

While direct use of molecular dynamics gives rise to the NVE (constant number, constant vol-
ume, constant energy ensemble), most quantities that we wish to calculate are actually from a
constant temperature (NVT) ensemble, also called the canonical ensemble. GROMACS can use
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the weak-coupling scheme of Berendsen [25], stochastic randomization through the Andersen
thermostat [26], the extended ensemble Nosé-Hoover scheme [27, 28], or a velocity-rescaling
scheme [29] to simulate constant temperature, with advantages of each of the schemes laid out
below.

There are several other reasons why it might be necessary to control the temperature of the system
(drift during equilibration, drift as a result of force truncation and integration errors, heating due to
external or frictional forces), but this is not entirely correct to do from a thermodynamic standpoint,
and in some cases only masks the symptoms (increase in temperature of the system) rather than the
underlying problem (deviations from correct physics in the dynamics). For larger systems, errors
in ensemble averages and structural properties incurred by using temperature control to remove
slow drifts in temperature appear to be negligible, but no completely comprehensive comparisons
have been carried out, and some caution must be taking in interpreting the results.

Berendsen temperature coupling

The Berendsen algorithm mimics weak coupling with first-order kinetics to an external heat bath
with given temperature T0. See ref. [30] for a comparison with the Nosé-Hoover scheme. The
effect of this algorithm is that a deviation of the system temperature from T0 is slowly corrected
according to:

dT
dt

=
T0 − T
τ

(3.44)

which means that a temperature deviation decays exponentially with a time constant τ . This
method of coupling has the advantage that the strength of the coupling can be varied and adapted
to the user requirement: for equilibration purposes the coupling time can be taken quite short (e.g.
0.01 ps), but for reliable equilibrium runs it can be taken much longer (e.g. 0.5 ps) in which case
it hardly influences the conservative dynamics.

The Berendsen thermostat suppresses the fluctuations of the kinetic energy. This means that one
does not generate a proper canonical ensemble, so rigorously, the sampling will be incorrect. This
error scales with 1/N , so for very large systems most ensemble averages will not be affected sig-
nificantly, except for the distribution of the kinetic energy itself. However, fluctuation properties,
such as the heat capacity, will be affected. A similar thermostat which does produce a correct
ensemble is the velocity rescaling thermostat [29] described below.

The heat flow into or out of the system is affected by scaling the velocities of each particle every
step, or every nTC steps, with a time-dependent factor λ, given by:

λ =

[
1 +

nTC∆t

τT

{
T0

T (t− 1
2∆t)

− 1

}]1/2

(3.45)

The parameter τT is close, but not exactly equal, to the time constant τ of the temperature coupling
(eqn. 3.44):

τ = 2CV τT /Ndfk (3.46)

where CV is the total heat capacity of the system, k is Boltzmann’s constant, and Ndf is the
total number of degrees of freedom. The reason that τ 6= τT is that the kinetic energy change
caused by scaling the velocities is partly redistributed between kinetic and potential energy and
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hence the change in temperature is less than the scaling energy. In practice, the ratio τ/τT ranges
from 1 (gas) to 2 (harmonic solid) to 3 (water). When we use the term “temperature coupling
time constant,” we mean the parameter τT . Note that in practice the scaling factor λ is limited
to the range of 0.8 <= λ <= 1.25, to avoid scaling by very large numbers which may crash the
simulation. In normal use, λ will always be much closer to 1.0.

Velocity-rescaling temperature coupling

The velocity-rescaling thermostat [29] is essentially a Berendsen thermostat (see above) with an
additional stochastic term that ensures a correct kinetic energy distribution by modifying it accord-
ing to

dK = (K0 −K)
dt
τT

+ 2

√
KK0

Nf

dW
√
τT
, (3.47)

where K is the kinetic energy, Nf the number of degrees of freedom and dW a Wiener process.
There are no additional parameters, except for a random seed. This thermostat produces a correct
canonical ensemble and still has the advantage of the Berendsen thermostat: first order decay
of temperature deviations and no oscillations. When an NV T ensemble is used, the conserved
energy quantity is written to the energy and log file.

Andersen thermostat

One simple way to maintain a thermostatted ensemble is to take an NV E integrator and pe-
riodically re-select the velocities of the particles from a Maxwell-Boltzmann distribution. [26]
This can either be done by randomizing all the velocities simultaneously (massive collision) ev-
ery τT /∆t steps (andersen-massive), or by randomizing every particle with some small
probability every timestep (andersen), equal to ∆t/τ , where in both cases ∆t is the timestep
and τT is a characteristic coupling time scale. Because of the way constraints operate, all par-
ticles in the same constraint group must be randomized simultaneously. Because of paralleliza-
tion issues, the andersen version cannot currently (5.0) be used in systems with constraints.
andersen-massive can be used regardless of constraints. This thermostat is also currently
only possible with velocity Verlet algorithms, because it operates directly on the velocities at each
timestep.

This algorithm completely avoids some of the ergodicity issues of other thermostatting algorithms,
as energy cannot flow back and forth between energetically decoupled components of the system
as in velocity scaling motions. However, it can slow down the kinetics of system by randomizing
correlated motions of the system, including slowing sampling when τT is at moderate levels (less
than 10 ps). This algorithm should therefore generally not be used when examining kinetics or
transport properties of the system. [31]

Nosé-Hoover temperature coupling

The Berendsen weak-coupling algorithm is extremely efficient for relaxing a system to the target
temperature, but once the system has reached equilibrium it might be more important to probe a
correct canonical ensemble. This is unfortunately not the case for the weak-coupling scheme.
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To enable canonical ensemble simulations, GROMACS also supports the extended-ensemble ap-
proach first proposed by Nosé [27] and later modified by Hoover [28]. The system Hamiltonian
is extended by introducing a thermal reservoir and a friction term in the equations of motion. The
friction force is proportional to the product of each particle’s velocity and a friction parameter, ξ.
This friction parameter (or “heat bath” variable) is a fully dynamic quantity with its own momen-
tum (pξ) and equation of motion; the time derivative is calculated from the difference between the
current kinetic energy and the reference temperature.

In this formulation, the particles’ equations of motion in Fig. 3.3 are replaced by:

d2ri
dt2

=
F i

mi
− pξ
Q

dri
dt
, (3.48)

where the equation of motion for the heat bath parameter ξ is:

dpξ
dt

= (T − T0) . (3.49)

The reference temperature is denoted T0, while T is the current instantaneous temperature of the
system. The strength of the coupling is determined by the constant Q (usually called the “mass
parameter” of the reservoir) in combination with the reference temperature. 1

The conserved quantity for the Nosé-Hoover equations of motion is not the total energy, but rather

H =
N∑
i=1

pi
2mi

+ U (r1, r2, . . . , rN ) +
p2
ξ

2Q
+NfkTξ, (3.50)

where Nf is the total number of degrees of freedom.

In our opinion, the mass parameter is a somewhat awkward way of describing coupling strength,
especially due to its dependence on reference temperature (and some implementations even in-
clude the number of degrees of freedom in your system when defining Q). To maintain the cou-
pling strength, one would have to change Q in proportion to the change in reference temperature.
For this reason, we prefer to let the GROMACS user work instead with the period τT of the oscil-
lations of kinetic energy between the system and the reservoir instead. It is directly related to Q
and T0 via:

Q =
τ2
TT0

4π2
. (3.51)

This provides a much more intuitive way of selecting the Nosé-Hoover coupling strength (similar
to the weak-coupling relaxation), and in addition τT is independent of system size and reference
temperature.

It is however important to keep the difference between the weak-coupling scheme and the Nosé-
Hoover algorithm in mind: Using weak coupling you get a strongly damped exponential relax-
ation, while the Nosé-Hoover approach produces an oscillatory relaxation. The actual time it
takes to relax with Nosé-Hoover coupling is several times larger than the period of the oscillations
that you select. These oscillations (in contrast to exponential relaxation) also means that the time
constant normally should be 4–5 times larger than the relaxation time used with weak coupling,
but your mileage may vary.

1Note that some derivations, an alternative notation ξalt = vξ = pξ/Q is used.
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Nosé-Hoover dynamics in simple systems such as collections of harmonic oscillators, can be non-
ergodic, meaning that only a subsection of phase space is ever sampled, even if the simulations
were to run for infinitely long. For this reason, the Nosé-Hoover chain approach was developed,
where each of the Nosé-Hoover thermostats has its own Nosé-Hoover thermostat controlling its
temperature. In the limit of an infinite chain of thermostats, the dynamics are guaranteed to be
ergodic. Using just a few chains can greatly improve the ergodicity, but recent research has shown
that the system will still be nonergodic, and it is still not entirely clear what the practical effect of
this [32]. Currently, the default number of chains is 10, but this can be controlled by the user. In the
case of chains, the equations are modified in the following way to include a chain of thermostatting
particles [33]:

d2ri
dt2

=
F i

mi
− pξ1
Q1

dri
dt

dpξ1
dt

= (T − T0)− pξ1
pξ2
Q2

dpξi=2...N

dt
=

(
p2
ξi−1

Qi−1
− kT

)
− pξi

pξi+1

Qi+1

dpξN
dt

=

(
p2
ξN−1

QN−1
− kT

)
(3.52)

The conserved quantity for Nosé-Hoover chains is

H =
N∑
i=1

pi
2mi

+ U (r1, r2, . . . , rN ) +
M∑
k=1

p2
ξk

2Q′k
+NfkTξ1 + kT

M∑
k=2

ξk (3.53)

The values and velocities of the Nosé-Hoover thermostat variables are generally not included in the
output, as they take up a fair amount of space and are generally not important for analysis of sim-
ulations, but this can be overridden by defining the environment variable GMX_NOSEHOOVER_-
CHAINS, which will print the values of all the positions and velocities of all Nosé-Hoover particles
in the chain to the .edr file. Leap-frog simulations currently can only have Nosé-Hoover chain
lengths of 1, but this will likely be updated in later version.

As described in the integrator section, for temperature coupling, the temperature that the algorithm
attempts to match to the reference temperature is calculated differently in velocity Verlet and leap-
frog dynamics. Velocity Verlet (md-vv) uses the full-step kinetic energy, while leap-frog and
md-vv-avek use the half-step-averaged kinetic energy.

We can examine the Trotter decomposition again to better understand the differences between
these constant-temperature integrators. In the case of Nosé-Hoover dynamics (for simplicity, using
a chain with N = 1, with more details in Ref. [34]), we split the Liouville operator as

iL = iL1 + iL2 + iLNHC, (3.54)

where

iL1 =
N∑
i=1

[
pi
mi

]
· ∂
∂ri
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iL2 =
N∑
i=1

F i ·
∂

∂pi

iLNHC =
N∑
i=1

−pξ
Q
vi · ∇vi +

pξ
Q

∂

∂ξ
+ (T − T0)

∂

∂pξ
(3.55)

For standard velocity Verlet with Nosé-Hoover temperature control, this becomes

exp(iL∆t) = exp (iLNHC∆t/2) exp (iL2∆t/2)

exp (iL1∆t) exp (iL2∆t/2) exp (iLNHC∆t/2) +O(∆t3). (3.56)

For half-step-averaged temperature control using md-vv-avek, this decomposition will not work,
since we do not have the full step temperature until after the second velocity step. However, we
can construct an alternate decomposition that is still reversible, by switching the place of the NHC
and velocity portions of the decomposition:

exp(iL∆t) = exp (iL2∆t/2) exp (iLNHC∆t/2) exp (iL1∆t)

exp (iLNHC∆t/2) exp (iL2∆t/2) +O(∆t3) (3.57)

This formalism allows us to easily see the difference between the different flavors of velocity
Verlet integrator. The leap-frog integrator can be seen as starting with Eq. 3.57 just before the
exp (iL1∆t) term, yielding:

exp(iL∆t) = exp (iL1∆t) exp (iLNHC∆t/2)

exp (iL2∆t) exp (iLNHC∆t/2) +O(∆t3) (3.58)

and then using some algebra tricks to solve for some quantities are required before they are actually
calculated [35].

Group temperature coupling

In GROMACS temperature coupling can be performed on groups of atoms, typically a protein and
solvent. The reason such algorithms were introduced is that energy exchange between different
components is not perfect, due to different effects including cut-offs etc. If now the whole system
is coupled to one heat bath, water (which experiences the largest cut-off noise) will tend to heat
up and the protein will cool down. Typically 100 K differences can be obtained. With the use of
proper electrostatic methods (PME) these difference are much smaller but still not negligible. The
parameters for temperature coupling in groups are given in the mdp file. Recent investigation has
shown that small temperature differences between protein and water may actually be an artifact
of the way temperature is calculated when there are finite timesteps, and very large differences in
temperature are likely a sign of something else seriously going wrong with the system, and should
be investigated carefully [36].

One special case should be mentioned: it is possible to temperature-couple only part of the system,
leaving other parts without temperature coupling. This is done by specifying −1 for the time con-
stant τT for the group that should not be thermostatted. If only part of the system is thermostatted,
the system will still eventually converge to an NVT system. In fact, one suggestion for minimiz-
ing errors in the temperature caused by discretized timesteps is that if constraints on the water
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are used, then only the water degrees of freedom should be thermostatted, not protein degrees of
freedom, as the higher frequency modes in the protein can cause larger deviations from the “true”
temperature, the temperature obtained with small timesteps [36].

3.4.9 Pressure coupling

In the same spirit as the temperature coupling, the system can also be coupled to a “pressure
bath.” GROMACS supports both the Berendsen algorithm [25] that scales coordinates and box
vectors every step, the extended-ensemble Parrinello-Rahman approach [37, 38], and for the ve-
locity Verlet variants, the Martyna-Tuckerman-Tobias-Klein (MTTK) implementation of pressure
control [34]. Parrinello-Rahman and Berendsen can be combined with any of the temperature
coupling methods above; MTTK can only be used with Nosé-Hoover temperature control.

Berendsen pressure coupling

The Berendsen algorithm rescales the coordinates and box vectors every step, or every nPC steps,
with a matrix µ, which has the effect of a first-order kinetic relaxation of the pressure towards a
given reference pressure P0 according to

dP

dt
=

P0 −P

τp
. (3.59)

The scaling matrix µ is given by

µij = δij −
nPC∆t

3 τp
βij{P0ij − Pij(t)}. (3.60)

Here, β is the isothermal compressibility of the system. In most cases this will be a diagonal
matrix, with equal elements on the diagonal, the value of which is generally not known. It suffices
to take a rough estimate because the value of β only influences the non-critical time constant of
the pressure relaxation without affecting the average pressure itself. For water at 1 atm and 300 K
β = 4.6× 10−10 Pa−1 = 4.6× 10−5 bar−1, which is 7.6× 10−4 MD units (see chapter 2). Most
other liquids have similar values. When scaling completely anisotropically, the system has to be
rotated in order to obey eqn. 3.1. This rotation is approximated in first order in the scaling, which
is usually less than 10−4. The actual scaling matrix µ′ is

µ′ =

 µxx µxy + µyx µxz + µzx
0 µyy µyz + µzy
0 0 µzz

 . (3.61)

The velocities are neither scaled nor rotated.

In GROMACS, the Berendsen scaling can also be done isotropically, which means that instead
of P a diagonal matrix with elements of size trace(P )/3 is used. For systems with interfaces,
semi-isotropic scaling can be useful. In this case, the x/y-directions are scaled isotropically and
the z direction is scaled independently. The compressibility in the x/y or z-direction can be set to
zero, to scale only in the other direction(s).
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If you allow full anisotropic deformations and use constraints you might have to scale more slowly
or decrease your timestep to avoid errors from the constraint algorithms. It is important to note
that although the Berendsen pressure control algorithm yields a simulation with the correct average
pressure, it does not yield the exact NPT ensemble, and it is not yet clear exactly what errors this
approximation may yield.

Parrinello-Rahman pressure coupling

In cases where the fluctuations in pressure or volume are important per se (e.g. to calculate ther-
modynamic properties), especially for small systems, it may be a problem that the exact ensemble
is not well defined for the weak-coupling scheme, and that it does not simulate the true NPT
ensemble.

GROMACS also supports constant-pressure simulations using the Parrinello-Rahman approach [37,
38], which is similar to the Nosé-Hoover temperature coupling, and in theory gives the true NPT
ensemble. With the Parrinello-Rahman barostat, the box vectors as represented by the matrix b
obey the matrix equation of motion2

db2

dt2
= VW−1b′−1 (P − P ref ) . (3.62)

The volume of the box is denoted V , andW is a matrix parameter that determines the strength of
the coupling. The matrices P and P ref are the current and reference pressures, respectively.

The equations of motion for the particles are also changed, just as for the Nosé-Hoover coupling.
In most cases you would combine the Parrinello-Rahman barostat with the Nosé-Hoover thermo-
stat, but to keep it simple we only show the Parrinello-Rahman modification here:

d2ri
dt2

=
F i

mi
−M dri

dt
, (3.63)

M = b−1

[
b

db′

dt
+

db
dt
b′
]
b′−1. (3.64)

The (inverse) mass parameter matrix W−1 determines the strength of the coupling, and how the
box can be deformed. The box restriction (3.1) will be fulfilled automatically if the corresponding
elements of W−1 are zero. Since the coupling strength also depends on the size of your box,
we prefer to calculate it automatically in GROMACS. You only have to provide the approximate
isothermal compressibilities β and the pressure time constant τp in the input file (L is the largest
box matrix element): (

W−1
)
ij

=
4π2βij
3τ2
pL

. (3.65)

Just as for the Nosé-Hoover thermostat, you should realize that the Parrinello-Rahman time con-
stant is not equivalent to the relaxation time used in the Berendsen pressure coupling algorithm.

2The box matrix representation b in GROMACS corresponds to the transpose of the box matrix representation h in
the paper by Nosé and Klein. Because of this, some of our equations will look slightly different.
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In most cases you will need to use a 4–5 times larger time constant with Parrinello-Rahman cou-
pling. If your pressure is very far from equilibrium, the Parrinello-Rahman coupling may result in
very large box oscillations that could even crash your run. In that case you would have to increase
the time constant, or (better) use the weak-coupling scheme to reach the target pressure, and then
switch to Parrinello-Rahman coupling once the system is in equilibrium. Additionally, using the
leap-frog algorithm, the pressure at time t is not available until after the time step has completed,
and so the pressure from the previous step must be used, which makes the algorithm not directly
reversible, and may not be appropriate for high precision thermodynamic calculations.

Surface-tension coupling

When a periodic system consists of more than one phase, separated by surfaces which are par-
allel to the xy-plane, the surface tension and the z-component of the pressure can be coupled to
a pressure bath. Presently, this only works with the Berendsen pressure coupling algorithm in
GROMACS. The average surface tension γ(t) can be calculated from the difference between the
normal and the lateral pressure

γ(t) =
1

n

∫ Lz

0

{
Pzz(z, t)−

Pxx(z, t) + Pyy(z, t)

2

}
dz (3.66)

=
Lz
n

{
Pzz(t)−

Pxx(t) + Pyy(t)

2

}
, (3.67)

where Lz is the height of the box and n is the number of surfaces. The pressure in the z-direction
is corrected by scaling the height of the box with µzz

∆Pzz =
∆t

τp
{P0zz − Pzz(t)} (3.68)

µzz = 1 + βzz∆Pzz (3.69)

This is similar to normal pressure coupling, except that the factor of 1/3 is missing. The pressure
correction in the z-direction is then used to get the correct convergence for the surface tension to
the reference value γ0. The correction factor for the box length in the x/y-direction is

µx/y = 1 +
∆t

2 τp
βx/y

(
nγ0

µzzLz
−
{
Pzz(t) + ∆Pzz −

Pxx(t) + Pyy(t)

2

})
(3.70)

The value of βzz is more critical than with normal pressure coupling. Normally an incorrect
compressibility will just scale τp, but with surface tension coupling it affects the convergence of
the surface tension. When βzz is set to zero (constant box height), ∆Pzz is also set to zero, which
is necessary for obtaining the correct surface tension.

MTTK pressure control algorithms

As mentioned in the previous section, one weakness of leap-frog integration is in constant pressure
simulations, since the pressure requires a calculation of both the virial and the kinetic energy at the
full time step; for leap-frog, this information is not available until after the full timestep. Velocity
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Verlet does allow the calculation, at the cost of an extra round of global communication, and can
compute, mod any integration errors, the true NPT ensemble.

The full equations, combining both pressure coupling and temperature coupling, are taken from
Martyna et al. [34] and Tuckerman [39] and are referred to here as MTTK equations (Martyna-
Tuckerman-Tobias-Klein). We introduce for convenience ε = (1/3) ln(V/V0), where V0 is a
reference volume. The momentum of ε is vε = pε/W = ε̇ = V̇ /3V , and define α = 1 + 3/Ndof

(see Ref [39])

The isobaric equations are

ṙi =
pi
mi

+
pε
W
ri

ṗi
mi

=
1

mi
F i − α

pε
W

pi
mi

ε̇ =
pε
W

ṗε
W

=
3V

W
(Pint − P ) + (α− 1)

(
N∑
n=1

p2
i

mi

)
, (3.71)

(3.72)

where

Pint = Pkin − Pvir =
1

3V

[
N∑
i=1

(
p2
i

2mi
− ri · F i

)]
. (3.73)

The terms including α are required to make phase space incompressible [39]. The ε acceleration
term can be rewritten as

ṗε
W

=
3V

W
(αPkin − Pvir − P ) (3.74)

In terms of velocities, these equations become

ṙi = vi + vεri

v̇i =
1

mi
F i − αvεvi

ε̇ = vε

v̇ε =
3V

W
(Pint − P ) + (α− 1)

(
N∑
n=1

1

2
miv

2
i

)

Pint = Pkin − Pvir =
1

3V

[
N∑
i=1

(
1

2
miv

2
i − ri · F i

)]
(3.75)

For these equations, the conserved quantity is

H =
N∑
i=1

p2
i

2mi
+ U (r1, r2, . . . , rN ) +

pε
2W

+ PV (3.76)
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The next step is to add temperature control. Adding Nosé-Hoover chains, including to the barostat
degree of freedom, where we use η for the barostat Nosé-Hoover variables, andQ′ for the coupling
constants of the thermostats of the barostats, we get

ṙi =
pi
mi

+
pε
W
ri

ṗi
mi

=
1

mi
F i − α

pε
W

pi
mi
− pξ1
Q1

pi
mi

ε̇ =
pε
W

ṗε
W

=
3V

W
(αPkin − Pvir − P )− pη1

Q′1
pε

ξ̇k =
pξk
Qk

η̇k =
pηk
Q′k

ṗξk = Gk −
pξk+1

Qk+1
k = 1, . . . ,M − 1

ṗηk = G′k −
pηk+1

Q′k+1

k = 1, . . . ,M − 1

ṗξM = GM

ṗηM = G′M ,

(3.77)

where

Pint = Pkin − Pvir =
1

3V

[
N∑
i=1

(
p2
i

2mi
− ri · F i

)]

G1 =
N∑
i=1

p2
i

mi
−NfkT

Gk =
p2
ξk−1

2Qk−1
− kT k = 2, . . . ,M

G′1 =
p2
ε

2W
− kT

G′k =
p2
ηk−1

2Q′k−1

− kT k = 2, . . . ,M (3.78)

The conserved quantity is now

H =
N∑
i=1

pi
2mi

+ U (r1, r2, . . . , rN ) +
p2
ε

2W
+ PV +

M∑
k=1

p2
ξk

2Qk
+

M∑
k=1

p2
ηk

2Q′k
+NfkTξ1 + kT

M∑
i=2

ξk + kT
M∑
k=1

ηk (3.79)
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Returning to the Trotter decomposition formalism, for pressure control and temperature con-
trol [34] we get:

iL = iL1 + iL2 + iLε,1 + iLε,2 + iLNHC−baro + iLNHC (3.80)

where “NHC-baro” corresponds to the Nosè-Hoover chain of the barostat, and NHC corresponds
to the NHC of the particles,

iL1 =
N∑
i=1

[
pi
mi

+
pε
W
ri

]
· ∂
∂ri

(3.81)

iL2 =
N∑
i=1

F i − α
pε
W
pi ·

∂

∂pi
(3.82)

iLε,1 =
pε
W

∂

∂ε
(3.83)

iLε,2 = Gε
∂

∂pε
(3.84)

and where

Gε = 3V (αPkin − Pvir − P ) (3.85)

Using the Trotter decomposition, we get

exp(iL∆t) = exp (iLNHC−baro∆t/2) exp (iLNHC∆t/2)

exp (iLε,2∆t/2) exp (iL2∆t/2)

exp (iLε,1∆t) exp (iL1∆t)

exp (iL2∆t/2) exp (iLε,2∆t/2)

exp (iLNHC∆t/2) exp (iLNHC−baro∆t/2) +O(∆t3) (3.86)

The action of exp (iL1∆t) comes from the solution of the the differential equation ṙi = vi + vεri
with vi = pi/mi and vε constant with initial condition ri(0), evaluate at t = ∆t. This yields the
evolution

ri(∆t) = ri(0)evε∆t + ∆tvi(0)evε∆t/2
sinh (vε∆t/2)

vε∆t/2
. (3.87)

The action of exp (iL2∆t/2) comes from the solution of the differential equation v̇i = F i
mi
−

αvεvi, yielding

vi(∆t/2) = vi(0)e−αvε∆t/2 +
∆t

2mi
F i(0)e−αvε∆t/4

sinh (αvε∆t/4)

αvε∆t/4
. (3.88)

md-vv-avek uses the full step kinetic energies for determining the pressure with the pressure con-
trol, but the half-step-averaged kinetic energy for the temperatures, which can be written as a
Trotter decomposition as

exp(iL∆t) = exp (iLNHC−baro∆t/2) exp (iLε,2∆t/2) exp (iL2∆t/2)

exp (iLNHC∆t/2) exp (iLε,1∆t) exp (iL1∆t) exp (iLNHC∆t/2)

exp (iL2∆t/2) exp (iLε,2∆t/2) exp (iLNHC−baro∆t/2) +O(∆t3)(3.89)
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With constraints, the equations become significantly more complicated, in that each of these equa-
tions need to be solved iteratively for the constraint forces. The discussion of the details of the
iteration is beyond the scope of this manual; readers are encouraged to see the implementation
described in [40].

Infrequent evaluation of temperature and pressure coupling

Temperature and pressure control require global communication to compute the kinetic energy and
virial, which can become costly if performed every step for large systems. We can rearrange the
Trotter decomposition to give alternate symplectic, reversible integrator with the coupling steps
every n steps instead of every steps. These new integrators will diverge if the coupling time step
is too large, as the auxiliary variable integrations will not converge. However, in most cases, long
coupling times are more appropriate, as they disturb the dynamics less [34].

Standard velocity Verlet with Nosé-Hoover temperature control has a Trotter expansion

exp(iL∆t) ≈ exp (iLNHC∆t/2) exp (iL2∆t/2)

exp (iL1∆t) exp (iL2∆t/2) exp (iLNHC∆t/2) . (3.90)

If the Nosé-Hoover chain is sufficiently slow with respect to the motions of the system, we can
write an alternate integrator over n steps for velocity Verlet as

exp(iL∆t) ≈ (exp (iLNHC(n∆t/2)) [exp (iL2∆t/2)

exp (iL1∆t) exp (iL2∆t/2)]n exp (iLNHC(n∆t/2)) . (3.91)

For pressure control, this becomes

exp(iL∆t) ≈ exp (iLNHC−baro(n∆t/2)) exp (iLNHC(n∆t/2))

exp (iLε,2(n∆t/2)) [exp (iL2∆t/2)

exp (iLε,1∆t) exp (iL1∆t)

exp (iL2∆t/2)]n exp (iLε,2(n∆t/2))

exp (iLNHC(n∆t/2)) exp (iLNHC−baro(n∆t/2)) , (3.92)

where the box volume integration occurs every step, but the auxiliary variable integrations happen
every n steps.

3.4.10 The complete update algorithm

The complete algorithm for the update of velocities and coordinates is given using leap-frog in
Fig. 3.9. The SHAKE algorithm of step 4 is explained below.

GROMACS has a provision to “freeze” (prevent motion of) selected particles, which must be
defined as a “freeze group.” This is implemented using a freeze factor fg, which is a vector, and
differs for each freeze group (see sec. 3.3). This vector contains only zero (freeze) or one (don’t
freeze). When we take this freeze factor and the external acceleration ah into account the update
algorithm for the velocities becomes

v(t+
∆t

2
) = fg ∗ λ ∗

[
v(t− ∆t

2
) +

F (t)

m
∆t+ ah∆t

]
, (3.93)
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THE UPDATE ALGORITHM

Given:
Positions r of all atoms at time t

Velocities v of all atoms at time t− 1
2∆t

Accelerations F /m on all atoms at time t.
(Forces are computed disregarding any constraints)

Total kinetic energy and virial at t−∆t
⇓

1. Compute the scaling factors λ and µ
according to eqns. 3.45 and 3.60

⇓
2. Update and scale velocities: v′ = λ(v + a∆t)

⇓
3. Compute new unconstrained coordinates: r′ = r + v′∆t

⇓
4. Apply constraint algorithm to coordinates: constrain(r

′ → r′′; r)
⇓

5. Correct velocities for constraints: v = (r′′ − r)/∆t
⇓

6. Scale coordinates and box: r = µr′′; b = µb

Figure 3.9: The MD update algorithm with the leap-frog integrator
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where g and h are group indices which differ per atom.

3.4.11 Output step

The most important output of the MD run is the trajectory file, which contains particle coordi-
nates and (optionally) velocities at regular intervals. The trajectory file contains frames that could
include positions, velocities and/or forces, as well as information about the dimensions of the sim-
ulation volume, integration step, integration time, etc. The interpretation of the time varies with
the integrator chosen, as described above. For Velocity Verlet integrators, velocities labeled at
time t are for that time. For other integrators (e.g. leap-frog, stochastic dynamics), the velocities
labeled at time t are for time t− 1

2∆t.

Since the trajectory files are lengthy, one should not save every step! To retain all information it
suffices to write a frame every 15 steps, since at least 30 steps are made per period of the highest
frequency in the system, and Shannon’s sampling theorem states that two samples per period of
the highest frequency in a band-limited signal contain all available information. But that still gives
very long files! So, if the highest frequencies are not of interest, 10 or 20 samples per ps may
suffice. Be aware of the distortion of high-frequency motions by the stroboscopic effect, called
aliasing: higher frequencies are mirrored with respect to the sampling frequency and appear as
lower frequencies.

GROMACS can also write reduced-precision coordinates for a subset of the simulation system to
a special compressed trajectory file format. All the other tools can read and write this format. See
sec. 7.3 for details on how to set up your .mdp file to have mdrun use this feature.

3.5 Shell molecular dynamics

GROMACS can simulate polarizability using the shell model of Dick and Overhauser [41]. In
such models a shell particle representing the electronic degrees of freedom is attached to a nucleus
by a spring. The potential energy is minimized with respect to the shell position at every step
of the simulation (see below). Successful applications of shell models in GROMACS have been
published for N2 [42] and water [43].

3.5.1 Optimization of the shell positions

The force F S on a shell particle S can be decomposed into two components

F S = F bond + F nb (3.94)

where F bond denotes the component representing the polarization energy, usually represented by
a harmonic potential and F nb is the sum of Coulomb and van der Waals interactions. If we assume
that F nb is almost constant we can analytically derive the optimal position of the shell, i.e. where
F S = 0. If we have the shell S connected to atom A we have

F bond = kb (xS − xA) . (3.95)
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In an iterative solver, we have positions xS(n) where n is the iteration count. We now have at
iteration n

F nb = F S − kb (xS(n)− xA) (3.96)

and the optimal position for the shells xS(n+ 1) thus follows from

F S − kb (xS(n)− xA) + kb (xS(n+ 1)− xA) = 0 (3.97)

if we write
∆xS = xS(n+ 1)− xS(n) (3.98)

we finally obtain
∆xS = F S/kb (3.99)

which then yields the algorithm to compute the next trial in the optimization of shell positions

xS(n+ 1) = xS(n) + F S/kb. (3.100)

3.6 Constraint algorithms

Constraints can be imposed in GROMACS using LINCS (default) or the traditional SHAKE
method.

3.6.1 SHAKE

The SHAKE [44] algorithm changes a set of unconstrained coordinates r
′

to a set of coordinates
r′′ that fulfill a list of distance constraints, using a set r reference, as

SHAKE(r
′ → r′′; r) (3.101)

This action is consistent with solving a set of Lagrange multipliers in the constrained equations
of motion. SHAKE needs a relative tolerance; it will continue until all constraints are satisfied
within that relative tolerance. An error message is given if SHAKE cannot reset the coordinates
because the deviation is too large, or if a given number of iterations is surpassed.

Assume the equations of motion must fulfill K holonomic constraints, expressed as

σk(r1 . . . rN ) = 0; k = 1 . . .K. (3.102)

For example, (r1 − r2)2 − b2 = 0. Then the forces are defined as

− ∂

∂ri

(
V +

K∑
k=1

λkσk

)
, (3.103)

where λk are Lagrange multipliers which must be solved to fulfill the constraint equations. The
second part of this sum determines the constraint forcesGi, defined by

Gi = −
K∑
k=1

λk
∂σk
∂ri

(3.104)
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The displacement due to the constraint forces in the leap-frog or Verlet algorithm is equal to
(Gi/mi)(∆t)

2. Solving the Lagrange multipliers (and hence the displacements) requires the so-
lution of a set of coupled equations of the second degree. These are solved iteratively by SHAKE.
For the special case of rigid water molecules, that often make up more than 80% of the simulation
system we have implemented the SETTLE algorithm [45] (sec. 5.5).

For velocity Verlet, an additional round of constraining must be done, to constrain the velocities of
the second velocity half step, removing any component of the velocity parallel to the bond vector.
This step is called RATTLE, and is covered in more detail in the original Andersen paper [46].

3.6.2 LINCS

The LINCS algorithm

LINCS is an algorithm that resets bonds to their correct lengths after an unconstrained update [47].
The method is non-iterative, as it always uses two steps. Although LINCS is based on matrices, no
matrix-matrix multiplications are needed. The method is more stable and faster than SHAKE, but
it can only be used with bond constraints and isolated angle constraints, such as the proton angle
in OH. Because of its stability, LINCS is especially useful for Brownian dynamics. LINCS has
two parameters, which are explained in the subsection parameters. The parallel version of LINCS,
P-LINCS, is described in subsection 3.17.3.

The LINCS formulas

We consider a system of N particles, with positions given by a 3N vector r(t). For molecular
dynamics the equations of motion are given by Newton’s Law

d2r

dt2
= M−1F , (3.105)

where F is the 3N force vector and M is a 3N × 3N diagonal matrix, containing the masses of
the particles. The system is constrained by K time-independent constraint equations

gi(r) = |ri1 − ri2 | − di = 0 i = 1, . . . ,K. (3.106)

In a numerical integration scheme, LINCS is applied after an unconstrained update, just like
SHAKE. The algorithm works in two steps (see figure Fig. 3.10). In the first step, the projec-
tions of the new bonds on the old bonds are set to zero. In the second step, a correction is applied
for the lengthening of the bonds due to rotation. The numerics for the first step and the second
step are very similar. A complete derivation of the algorithm can be found in [47]. Only a short
description of the first step is given here.

A new notation is introduced for the gradient matrix of the constraint equations which appears on
the right hand side of this equation:

Bhi =
∂gh
∂ri

(3.107)

Notice thatB is aK×3N matrix, it contains the directions of the constraints. The following equa-
tion shows how the new constrained coordinates rn+1 are related to the unconstrained coordinates
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Figure 3.10: The three position updates needed for one time step. The dashed line is the old bond
of length d, the solid lines are the new bonds. l = d cos θ and p = (2d2 − l2)

1
2 .

runcn+1 by
rn+1 = (I − T nBn)runcn+1 + T nd =

runcn+1 −M−1Bn(BnM
−1BT

n )−1(Bnr
unc
n+1 − d)

(3.108)

where T = M−1BT (BM−1BT )−1. The derivation of this equation from eqns. 3.105 and 3.106
can be found in [47].

This first step does not set the real bond lengths to the prescribed lengths, but the projection of the
new bonds onto the old directions of the bonds. To correct for the rotation of bond i, the projection
of the bond, pi, on the old direction is set to

pi =
√

2d2
i − l2i , (3.109)

where li is the bond length after the first projection. The corrected positions are

r∗n+1 = (I − T nBn)rn+1 + T np. (3.110)

This correction for rotational effects is actually an iterative process, but during MD only one
iteration is applied. The relative constraint deviation after this procedure will be less than 0.0001
for every constraint. In energy minimization, this might not be accurate enough, so the number of
iterations is equal to the order of the expansion (see below).

Half of the CPU time goes to inverting the constraint coupling matrix BnM
−1BT

n , which has to
be done every time step. ThisK×K matrix has 1/mi1 +1/mi2 on the diagonal. The off-diagonal
elements are only non-zero when two bonds are connected, then the element is cosφ/mc, where
mc is the mass of the atom connecting the two bonds and φ is the angle between the bonds.

The matrix T is inverted through a power expansion. A K ×K matrix S is introduced which is
the inverse square root of the diagonal ofBnM

−1BT
n . This matrix is used to convert the diagonal

elements of the coupling matrix to one:

(BnM
−1BT

n )−1 = SS−1(BnM
−1BT

n )−1S−1S

= S(SBnM
−1BT

nS)−1S = S(I −An)−1S
(3.111)
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The matrixAn is symmetric and sparse and has zeros on the diagonal. Thus a simple trick can be
used to calculate the inverse:

(I −An)−1 = I +An +A2
n +A3

n + . . . (3.112)

This inversion method is only valid if the absolute values of all the eigenvalues of An are smaller
than one. In molecules with only bond constraints, the connectivity is so low that this will always
be true, even if ring structures are present. Problems can arise in angle-constrained molecules. By
constraining angles with additional distance constraints, multiple small ring structures are intro-
duced. This gives a high connectivity, leading to large eigenvalues. Therefore LINCS should NOT
be used with coupled angle-constraints.

For molecules with all bonds constrained the eigenvalues of A are around 0.4. This means that
with each additional order in the expansion eqn. 3.112 the deviations decrease by a factor 0.4. But
for relatively isolated triangles of constraints the largest eigenvalue is around 0.7. Such triangles
can occur when removing hydrogen angle vibrations with an additional angle constraint in alcohol
groups or when constraining water molecules with LINCS, for instance with flexible constraints.
The constraints in such triangles converge twice as slow as the other constraints. Therefore, start-
ing with GROMACS 4, additional terms are added to the expansion for such triangles

(I −An)−1 ≈ I +An + . . .+ANi
n +

(
A∗n + . . .+A∗n

Ni
)
ANi
n (3.113)

whereNi is the normal order of the expansion andA∗ only contains the elements ofA that couple
constraints within rigid triangles, all other elements are zero. In this manner, the accuracy of angle
constraints comes close to that of the other constraints, while the series of matrix vector multi-
plications required for determining the expansion only needs to be extended for a few constraint
couplings. This procedure is described in the P-LINCS paper[48].

The LINCS Parameters

The accuracy of LINCS depends on the number of matrices used in the expansion eqn. 3.112.
For MD calculations a fourth order expansion is enough. For Brownian dynamics with large time
steps an eighth order expansion may be necessary. The order is a parameter in the *.mdp file.
The implementation of LINCS is done in such a way that the algorithm will never crash. Even
when it is impossible to to reset the constraints LINCS will generate a conformation which fulfills
the constraints as well as possible. However, LINCS will generate a warning when in one step a
bond rotates over more than a predefined angle. This angle is set by the user in the *.mdp file.

3.7 Simulated Annealing

The well known simulated annealing (SA) protocol is supported in GROMACS, and you can even
couple multiple groups of atoms separately with an arbitrary number of reference temperatures
that change during the simulation. The annealing is implemented by simply changing the current
reference temperature for each group in the temperature coupling, so the actual relaxation and
coupling properties depends on the type of thermostat you use and how hard you are coupling it.
Since we are changing the reference temperature it is important to remember that the system will



50 Chapter 3. Algorithms

NOT instantaneously reach this value - you need to allow for the inherent relaxation time in the
coupling algorithm too. If you are changing the annealing reference temperature faster than the
temperature relaxation you will probably end up with a crash when the difference becomes too
large.

The annealing protocol is specified as a series of corresponding times and reference temperatures
for each group, and you can also choose whether you only want a single sequence (after which the
temperature will be coupled to the last reference value), or if the annealing should be periodic and
restart at the first reference point once the sequence is completed. You can mix and match both
types of annealing and non-annealed groups in your simulation.

3.8 Stochastic Dynamics

Stochastic or velocity Langevin dynamics adds a friction and a noise term to Newton’s equations
of motion, as

mi
d2ri
dt2

= −miγi
dri
dt

+ F i(r)+
◦
ri, (3.114)

where γi is the friction constant [1/ps] and
◦
ri (t) is a noise process with 〈◦ri (t)

◦
rj (t + s)〉 =

2miγikBTδ(s)δij . When 1/γi is large compared to the time scales present in the system, one
could see stochastic dynamics as molecular dynamics with stochastic temperature-coupling. The
advantage compared to MD with Berendsen temperature-coupling is that in case of SD the gen-
erated ensemble is known. For simulating a system in vacuum there is the additional advantage
that there is no accumulation of errors for the overall translational and rotational degrees of free-
dom. When 1/γi is small compared to the time scales present in the system, the dynamics will be
completely different from MD, but the sampling is still correct.

In GROMACS there are two algorithms to integrate equation (3.114): a simple and efficient one
and a more complex leap-frog algorithm [49], which is now deprecated. The accuracy of both
integrators is equivalent to the normal MD leap-frog and Velocity Verlet integrator, except with
constraints where the complex SD integrator samples at a temperature that is slightly too high
(although that error is smaller than the one from the Velocity Verlet integrator that uses the kinetic
energy from the full-step velocity). The simple integrator is nearly identical to the common way
of discretizing the Langevin equation, but the friction and velocity term are applied in an impulse
fashion [50]. The simple integrator is:

v′ = v(t− 1

2
∆t) +

1

m
F (t)∆t (3.115)

∆v = −α v′(t+
1

2
∆t) +

√
kBT

m
(1− α2) rGi (3.116)

r(t+ ∆t) = r(t) +

(
v′ +

1

2
∆v

)
∆t (3.117)

v(t+
1

2
∆t) = v′ + ∆v (3.118)

α = 1− e−γ∆t (3.119)

where rGi is Gaussian distributed noise with µ = 0, σ = 1. The velocity is first updated a full time
step without friction and noise to get v′, identical to the normal update in leap-frog. The friction
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and noise are then applied as an impulse at step t + ∆t. The advantage of this scheme is that the
velocity-dependent terms act at the full time step, which makes the correct integration of forces that
depend on both coordinates and velocities, such as constraints and dissipative particle dynamics
(DPD, not implented yet), straightforward. With constraints, the coordinate update eqn. 3.117 is
split into a normal leap-frog update and a ∆v. After both of these updates the constraints are
applied to coordinates and velocities.

In the deprecated complex algorithm, four Gaussian random numbers are required per integration
step per degree of freedom, and with constraints the coordinates need to be constrained twice per
integration step. Depending on the computational cost of the force calculation, this can take a
significant part of the simulation time. Exact continuation of a stochastic dynamics simulation is
not possible, because the state of the random number generator is not stored.

When using SD as a thermostat, an appropriate value for γ is e.g. 0.5 ps−1, since this results in a
friction that is lower than the internal friction of water, while it still provides efficient thermostat-
ting.

3.9 Brownian Dynamics

In the limit of high friction, stochastic dynamics reduces to Brownian dynamics, also called po-
sition Langevin dynamics. This applies to over-damped systems, i.e. systems in which the inertia
effects are negligible. The equation is

dri
dt

=
1

γi
F i(r)+

◦
ri (3.120)

where γi is the friction coefficient [amu/ps] and
◦
ri(t) is a noise process with 〈◦ri(t)

◦
rj(t + s)〉 =

2δ(s)δijkBT/γi. In GROMACS the equations are integrated with a simple, explicit scheme

ri(t+ ∆t) = ri(t) +
∆t

γi
F i(r(t)) +

√
2kBT

∆t

γi
rGi , (3.121)

where rGi is Gaussian distributed noise with µ = 0, σ = 1. The friction coefficients γi can be
chosen the same for all particles or as γi = mi γi, where the friction constants γi can be different
for different groups of atoms. Because the system is assumed to be over-damped, large timesteps
can be used. LINCS should be used for the constraints since SHAKE will not converge for large
atomic displacements. BD is an option of the mdrun program.

3.10 Energy Minimization

Energy minimization in GROMACS can be done using steepest descent, conjugate gradients, or l-
bfgs (limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newtonian minimizer...we prefer
the abbreviation). EM is just an option of the mdrun program.
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3.10.1 Steepest Descent

Although steepest descent is certainly not the most efficient algorithm for searching, it is robust
and easy to implement.

We define the vector r as the vector of all 3N coordinates. Initially a maximum displacement h0

(e.g. 0.01 nm) must be given.

First the forces F and potential energy are calculated. New positions are calculated by

rn+1 = rn +
F n

max(|F n|)
hn, (3.122)

where hn is the maximum displacement and F n is the force, or the negative gradient of the poten-
tial V . The notation max(|F n|) means the largest of the absolute values of the force components.
The forces and energy are again computed for the new positions
If (Vn+1 < Vn) the new positions are accepted and hn+1 = 1.2hn.
If (Vn+1 ≥ Vn) the new positions are rejected and hn = 0.2hn.

The algorithm stops when either a user-specified number of force evaluations has been performed
(e.g. 100), or when the maximum of the absolute values of the force (gradient) components is
smaller than a specified value ε. Since force truncation produces some noise in the energy evalua-
tion, the stopping criterion should not be made too tight to avoid endless iterations. A reasonable
value for ε can be estimated from the root mean square force f a harmonic oscillator would exhibit
at a temperature T . This value is

f = 2πν
√

2mkT , (3.123)

where ν is the oscillator frequency, m the (reduced) mass, and k Boltzmann’s constant. For a
weak oscillator with a wave number of 100 cm−1 and a mass of 10 atomic units, at a temperature
of 1 K, f = 7.7 kJ mol−1 nm−1. A value for ε between 1 and 10 is acceptable.

3.10.2 Conjugate Gradient

Conjugate gradient is slower than steepest descent in the early stages of the minimization, but
becomes more efficient closer to the energy minimum. The parameters and stop criterion are the
same as for steepest descent. In GROMACS conjugate gradient can not be used with constraints,
including the SETTLE algorithm for water [45], as this has not been implemented. If water is
present it must be of a flexible model, which can be specified in the *.mdp file by define =
-DFLEXIBLE.

This is not really a restriction, since the accuracy of conjugate gradient is only required for mini-
mization prior to a normal-mode analysis, which cannot be performed with constraints. For most
other purposes steepest descent is efficient enough.

3.10.3 L-BFGS

The original BFGS algorithm works by successively creating better approximations of the inverse
Hessian matrix, and moving the system to the currently estimated minimum. The memory re-
quirements for this are proportional to the square of the number of particles, so it is not practical
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for large systems like biomolecules. Instead, we use the L-BFGS algorithm of Nocedal [51, 52],
which approximates the inverse Hessian by a fixed number of corrections from previous steps.
This sliding-window technique is almost as efficient as the original method, but the memory re-
quirements are much lower - proportional to the number of particles multiplied with the correction
steps. In practice we have found it to converge faster than conjugate gradients, but due to the
correction steps it is not yet parallelized. It is also noteworthy that switched or shifted interactions
usually improve the convergence, since sharp cut-offs mean the potential function at the current
coordinates is slightly different from the previous steps used to build the inverse Hessian approxi-
mation.

3.11 Normal-Mode Analysis

Normal-mode analysis [53, 54, 55] can be performed using GROMACS, by diagonalization of the
mass-weighted Hessian H:

RTM−1/2HM−1/2R = diag(λ1, . . . , λ3N ) (3.124)

λi = (2πωi)
2 (3.125)

where M contains the atomic masses, R is a matrix that contains the eigenvectors as columns, λi
are the eigenvalues and ωi are the corresponding frequencies.

First the Hessian matrix, which is a 3N × 3N matrix where N is the number of atoms, needs to
be calculated:

Hij =
∂2V

∂xi∂xj
(3.126)

where xi and xj denote the atomic x, y or z coordinates. In practice, this equation is not used, but
the Hessian is calculated numerically from the force as:

Hij = −fi(x + hej)− fi(x− hej)

2h
(3.127)

fi = −∂V
∂xi

(3.128)

where ej is the unit vector in direction j. It should be noted that for a usual normal-mode cal-
culation, it is necessary to completely minimize the energy prior to computation of the Hessian.
The tolerance required depends on the type of system, but a rough indication is 0.001 kJ mol−1.
Minimization should be done with conjugate gradients or L-BFGS in double precision.

A number of GROMACS programs are involved in these calculations. First, the energy should
be minimized using mdrun. Then, mdrun computes the Hessian. Note that for generating the
run input file, one should use the minimized conformation from the full precision trajectory file,
as the structure file is not accurate enough. g_nmeig does the diagonalization and the sorting of
the normal modes according to their frequencies. Both mdrun and g_nmeig should be run in
double precision. The normal modes can be analyzed with the program g_anaeig. Ensembles
of structures at any temperature and for any subset of normal modes can be generated with g_-
nmens. An overview of normal-mode analysis and the related principal component analysis (see
sec. 8.10) can be found in [56].
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Figure 3.11: Free energy cycles. A: to calculate ∆G12, the free energy difference between the
binding of inhibitor I to enzymes E respectively E′. B: to calculate ∆G12, the free energy differ-
ence for binding of inhibitors I respectively I′ to enzyme E.

3.12 Free energy calculations

3.12.1 Slow-growth methods

Free energy calculations can be performed in GROMACS using a number of methods, including
“slow-growth.” An example problem might be calculating the difference in free energy of binding
of an inhibitor I to an enzyme E and to a mutated enzyme E′. It is not feasible with computer sim-
ulations to perform a docking calculation for such a large complex, or even releasing the inhibitor
from the enzyme in a reasonable amount of computer time with reasonable accuracy. However, if
we consider the free energy cycle in Fig. 3.11A we can write:

∆G1 −∆G2 = ∆G3 −∆G4 (3.129)

If we are interested in the left-hand term we can equally well compute the right-hand term.

If we want to compute the difference in free energy of binding of two inhibitors I and I′ to an
enzyme E (Fig. 3.11B) we can again use eqn. 3.129 to compute the desired property.

Free energy differences between two molecular species can be calculated in GROMACS using
the “slow-growth” method. Such free energy differences between different molecular species
are physically meaningless, but they can be used to obtain meaningful quantities employing a
thermodynamic cycle. The method requires a simulation during which the Hamiltonian of the
system changes slowly from that describing one system (A) to that describing the other system
(B). The change must be so slow that the system remains in equilibrium during the process; if that
requirement is fulfilled, the change is reversible and a slow-growth simulation from B to A will
yield the same results (but with a different sign) as a slow-growth simulation from A to B. This is
a useful check, but the user should be aware of the danger that equality of forward and backward
growth results does not guarantee correctness of the results.

The required modification of the Hamiltonian H is realized by making H a function of a coupling
parameter λ : H = H(p, q;λ) in such a way that λ = 0 describes system A and λ = 1 describes
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system B:
H(p, q; 0) = HA(p, q); H(p, q; 1) = HB(p, q). (3.130)

In GROMACS, the functional form of the λ-dependence is different for the various force-field
contributions and is described in section sec. 4.5.

The Helmholtz free energy A is related to the partition function Q of an N,V, T ensemble, which
is assumed to be the equilibrium ensemble generated by a MD simulation at constant volume and
temperature. The generally more useful Gibbs free energy G is related to the partition function
∆ of an N, p, T ensemble, which is assumed to be the equilibrium ensemble generated by a MD
simulation at constant pressure and temperature:

A(λ) = −kBT lnQ (3.131)

Q = c

∫ ∫
exp[−βH(p, q;λ)] dp dq (3.132)

G(λ) = −kBT ln ∆ (3.133)

∆ = c

∫ ∫ ∫
exp[−βH(p, q;λ)− βpV ] dp dq dV (3.134)

G = A+ pV, (3.135)

where β = 1/(kBT ) and c = (N !h3N )−1. These integrals over phase space cannot be evaluated
from a simulation, but it is possible to evaluate the derivative with respect to λ as an ensemble
average:

dA

dλ
=

∫∫
(∂H/∂λ) exp[−βH(p, q;λ)] dp dq∫∫

exp[−βH(p, q;λ)] dp dq
=

〈
∂H

∂λ

〉
NV T ;λ

, (3.136)

with a similar relation for dG/dλ in the N, p, T ensemble. The difference in free energy between
A and B can be found by integrating the derivative over λ:

AB(V, T )−AA(V, T ) =

∫ 1

0

〈
∂H

∂λ

〉
NV T ;λ

dλ (3.137)

GB(p, T )−GA(p, T ) =

∫ 1

0

〈
∂H

∂λ

〉
NpT ;λ

dλ. (3.138)

If one wishes to evaluate GB(p, T ) − GA(p, T ), the natural choice is a constant-pressure simu-
lation. However, this quantity can also be obtained from a slow-growth simulation at constant
volume, starting with system A at pressure p and volume V and ending with system B at pressure
pB , by applying the following small (but, in principle, exact) correction:

GB(p)−GA(p) = AB(V )−AA(V )−
∫ pB

p
[V B(p′)− V ] dp′ (3.139)

Here we omitted the constant T from the notation. This correction is roughly equal to −1
2(pB −

p)∆V = (∆V )2/(2κV ), where ∆V is the volume change at p and κ is the isothermal compress-
ibility. This is usually small; for example, the growth of a water molecule from nothing in a bath
of 1000 water molecules at constant volume would produce an additional pressure of as much as
22 bar, but a correction to the Helmholtz free energy of just -1 kJ mol−1.

In Cartesian coordinates, the kinetic energy term in the Hamiltonian depends only on the momenta,
and can be separately integrated and, in fact, removed from the equations. When masses do not
change, there is no contribution from the kinetic energy at all; otherwise the integrated contribution
to the free energy is−3

2kBT ln(mB/mA). Note that this is only true in the absence of constraints.
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3.12.2 Thermodynamic integration

GROMACS offers the possibility to integrate eq. 3.137 or eq. 3.138 in one simulation over the
full range from A to B. However, if the change is large and insufficient sampling can be expected,
the user may prefer to determine the value of 〈dG/dλ〉 accurately at a number of well-chosen
intermediate values of λ. This can easily be done by setting the stepsize delta_lambda to zero.
Each simulation can be equilibrated first, and a proper error estimate can be made for each value of
dG/dλ from the fluctuation of ∂H/∂λ. The total free energy change is then determined afterward
by an appropriate numerical integration procedure.

GROMACS now also supports the use of Bennett’s Acceptance Ratio [57] for calculating values
of ∆G for transformations from state A to state B using the program g_bar. The same data can
also be used to calculate free energies using MBAR [58], though the analysis currently requires
external tools from the external pymbar package, at https://SimTK.org/home/pymbar.

The λ-dependence for the force-field contributions is described in detail in section sec. 4.5.

3.13 Replica exchange

Replica exchange molecular dynamics (REMD) is a method that can be used to speed up the sam-
pling of any type of simulation, especially if conformations are separated by relatively high energy
barriers. It involves simulating multiple replicas of the same system at different temperatures and
randomly exchanging the complete state of two replicas at regular intervals with the probability:

P (1↔ 2) = min

(
1, exp

[(
1

kBT1
− 1

kBT2

)
(U1 − U2)

])
(3.140)

where T1 and T2 are the reference temperatures and U1 and U2 are the instantaneous potential
energies of replicas 1 and 2 respectively. After exchange the velocities are scaled by (T1/T2)±0.5

and a neighbor search is performed the next step. This combines the fast sampling and frequent
barrier-crossing of the highest temperature with correct Boltzmann sampling at all the different
temperatures [59, 60]. We only attempt exchanges for neighboring temperatures as the probability
decreases very rapidly with the temperature difference. One should not attempt exchanges for
all possible pairs in one step. If, for instance, replicas 1 and 2 would exchange, the chance of
exchange for replicas 2 and 3 not only depends on the energies of replicas 2 and 3, but also on the
energy of replica 1. In GROMACS this is solved by attempting exchange for all “odd” pairs on
“odd” attempts and for all “even” pairs on “even” attempts. If we have four replicas: 0, 1, 2 and 3,
ordered in temperature and we attempt exchange every 1000 steps, pairs 0-1 and 2-3 will be tried
at steps 1000, 3000 etc. and pair 1-2 at steps 2000, 4000 etc.

How should one choose the temperatures? The energy difference can be written as:

U1 − U2 = Ndf
c

2
kB(T1 − T2) (3.141)

where Ndf is the total number of degrees of freedom of one replica and c is 1 for harmonic poten-
tials and around 2 for protein/water systems. If T2 = (1 + ε)T1 the probability becomes:

P (1↔ 2) = exp

(
− ε2cNdf

2(1 + ε)

)
≈ exp

(
−ε2 c

2
Ndf

)
(3.142)
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Thus for a probability of e−2 ≈ 0.135 one obtains ε ≈ 2/
√
cNdf . With all bonds constrained one

has Ndf ≈ 2Natoms and thus for c = 2 one should choose ε as 1/
√
Natoms. However there is one

problem when using pressure coupling. The density at higher temperatures will decrease, leading
to higher energy [61], which should be taken into account. The GROMACS website features a so-
called “REMD calculator,” that lets you type in the temperature range and the number of atoms,
and based on that proposes a set of temperatures.

An extension to the REMD for the isobaric-isothermal ensemble was proposed by Okabe et
al. [62]. In this work the exchange probability is modified to:

P (1↔ 2) = min

(
1, exp

[(
1

kBT1
− 1

kBT2

)
(U1 − U2) +

(
P1

kBT1
− P2

kBT2

)
(V1 − V2)

])
(3.143)

where P1 and P2 are the respective reference pressures and V1 and V2 are the respective instanta-
neous volumes in the simulations. In most cases the differences in volume are so small that the
second term is negligible. It only plays a role when the difference between P1 and P2 is large or
in phase transitions.

Hamiltonian replica exchange is also supported in GROMACS. In Hamiltonian replica exchange,
each replica has a different Hamiltonian, defined by the free energy pathway specified for the
simulation. The exchange probability to maintain the correct ensemble probabilities is:

P (1↔ 2) = min

(
1, exp

[(
1

kBT
− 1

kBT

)
((U1(x2)− U1(x1)) + (U2(x1)− U2(x2)))

])
(3.144)

The separate Hamiltonians are defined by the free energy functionality of GROMACS, with swaps
made between the different values of λ defined in the mdp file.

Hamiltonian and temperature replica exchange can also be performed simultaneously, using the
acceptance criteria:

P (1↔ 2) = min

(
1, exp

[(
1

kBT
−
)

(
U1(x2)− U1(x1)

kBT1
+
U2(x1)− U2(x2)

kBT2
)

])
(3.145)

Gibbs sampling replica exchange has also been implemented in GROMACS [63]. In Gibbs sam-
pling replica exchange, all possible pairs are tested for exchange, allowing swaps between replicas
that are not neighbors.

Gibbs sampling replica exchange requires no additional potential energy calculations. However
there is an additional communication cost in Gibbs sampling replica exchange, as for some permu-
tations, more than one round of swaps must take place. In some cases, this extra communication
cost might affect the efficiency.

All replica exchange variants are options of the mdrun program. It will only work when MPI is
installed, due to the inherent parallelism in the algorithm. For efficiency each replica can run on a
separate rank. See the manual page of mdrun on how to use these multinode features.

3.14 Essential Dynamics sampling

The results from Essential Dynamics (see sec. 8.10) of a protein can be used to guide MD sim-
ulations. The idea is that from an initial MD simulation (or from other sources) a definition of
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the collective fluctuations with largest amplitude is obtained. The position along one or more of
these collective modes can be constrained in a (second) MD simulation in a number of ways for
several purposes. For example, the position along a certain mode may be kept fixed to monitor
the average force (free-energy gradient) on that coordinate in that position. Another application
is to enhance sampling efficiency with respect to usual MD [64, 65]. In this case, the system is
encouraged to sample its available configuration space more systematically than in a diffusion-like
path that proteins usually take.

Another possibility to enhance sampling is flooding. Here a flooding potential is added to certain
(collective) degrees of freedom to expel the system out of a region of phase space [66].

The procedure for essential dynamics sampling or flooding is as follows. First, the eigenvectors
and eigenvalues need to be determined using covariance analysis (g_covar) or normal-mode
analysis (g_nmeig). Then, this information is fed into make_edi, which has many options for
selecting vectors and setting parameters, see gmx make_edi -h. The generated edi input file
is then passed to mdrun.

3.15 Expanded Ensemble

In an expanded ensemble simulation [67], both the coordinates and the thermodynamic ensemble
are treated as configuration variables that can be sampled over. The probability of any given state
can be written as:

P (~x, k) ∝ exp (−βkUk + gk) , (3.146)

where βk = 1
kBTk

is the β corresponding to the kth thermodynamic state, and gk is a user-specified
weight factor corresponding to the kth state. This space is therefore a mixed, generalized, or
expanded ensemble which samples from multiple thermodynamic ensembles simultaneously. gk
is chosen to give a specific weighting of each subensemble in the expanded ensemble, and can
either be fixed, or determined by an iterative procedure. The set of gk is frequently chosen to
give each thermodynamic ensemble equal probability, in which case gk is equal to the free energy
in non-dimensional units, but they can be set to arbitrary values as desired. Several different
algorithms can be used to equilibrate these weights, described in the mdp option listings.

In GROMACS, this space is sampled by alternating sampling in the k and ~x directions. Sampling
in the ~x direction is done by standard molecular dynamics sampling; sampling between the dif-
ferent thermodynamics states is done by Monte Carlo, with several different Monte Carlo moves
supported. The k states can be defined by different temperatures, or choices of the free energy
λ variable, or both. Expanded ensemble simulations thus represent a serialization of the replica
exchange formalism, allowing a single simulation to explore many thermodynamic states.

3.16 Parallelization

The CPU time required for a simulation can be reduced by running the simulation in parallel over
more than one core. Ideally, one would want to have linear scaling: running on N cores makes
the simulation N times faster. In practice this can only be achieved for a small number of cores.
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The scaling will depend a lot on the algorithms used. Also, different algorithms can have different
restrictions on the interaction ranges between atoms.

3.17 Domain decomposition

Since most interactions in molecular simulations are local, domain decomposition is a natural way
to decompose the system. In domain decomposition, a spatial domain is assigned to each rank,
which will then integrate the equations of motion for the particles that currently reside in its local
domain. With domain decomposition, there are two choices that have to be made: the division of
the unit cell into domains and the assignment of the forces to domains. Most molecular simulation
packages use the half-shell method for assigning the forces. But there are two methods that always
require less communication: the eighth shell [68] and the midpoint [69] method. GROMACS
currently uses the eighth shell method, but for certain systems or hardware architectures it might
be advantageous to use the midpoint method. Therefore, we might implement the midpoint method
in the future. Most of the details of the domain decomposition can be found in the GROMACS 4
paper [5].

3.17.1 Coordinate and force communication

In the most general case of a triclinic unit cell, the space in divided with a 1-, 2-, or 3-D grid in
parallelepipeds that we call domain decomposition cells. Each cell is assigned to a particle-particle
rank. The system is partitioned over the ranks at the beginning of each MD step in which neighbor
searching is performed. Since the neighbor searching is based on charge groups, charge groups
are also the units for the domain decomposition. Charge groups are assigned to the cell where
their center of geometry resides. Before the forces can be calculated, the coordinates from some
neighboring cells need to be communicated, and after the forces are calculated, the forces need
to be communicated in the other direction. The communication and force assignment is based on
zones that can cover one or multiple cells. An example of a zone setup is shown in Fig. 3.12.

The coordinates are communicated by moving data along the “negative” direction in x, y or z
to the next neighbor. This can be done in one or multiple pulses. In Fig. 3.12 two pulses in x
are required, then one in y and then one in z. The forces are communicated by reversing this
procedure. See the GROMACS 4 paper [5] for details on determining which non-bonded and
bonded forces should be calculated on which rank.

3.17.2 Dynamic load balancing

When different ranks have a different computational load (load imbalance), all ranks will have to
wait for the one that takes the most time. One would like to avoid such a situation. Load imbalance
can occur due to three reasons:

• inhomogeneous particle distribution

• inhomogeneous interaction cost distribution (charged/uncharged, water/non-water due to
GROMACS water innerloops)
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Figure 3.12: A non-staggered domain decomposition grid of 3×2×2 cells. Coordinates in zones
1 to 7 are communicated to the corner cell that has its home particles in zone 0. rc is the cut-off
radius.

• statistical fluctuation (only with small particle numbers)

So we need a dynamic load balancing algorithm where the volume of each domain decomposition
cell can be adjusted independently. To achieve this, the 2- or 3-D domain decomposition grids
need to be staggered. Fig. 3.13 shows the most general case in 2-D. Due to the staggering, one
might require two distance checks for deciding if a charge group needs to be communicated: a
non-bonded distance and a bonded distance check.

By default, mdrun automatically turns on the dynamic load balancing during a simulation when
the total performance loss due to the force calculation imbalance is 5% or more. Note that the
reported force load imbalance numbers might be higher, since the force calculation is only part of
work that needs to be done during an integration step. The load imbalance is reported in the log
file at log output steps and when the -v option is used also on screen. The average load imbalance
and the total performance loss due to load imbalance are reported at the end of the log file.

There is one important parameter for the dynamic load balancing, which is the minimum allowed
scaling. By default, each dimension of the domain decomposition cell can scale down by at least
a factor of 0.8. For 3-D domain decomposition this allows cells to change their volume by about a
factor of 0.5, which should allow for compensation of a load imbalance of 100%. The minimum
allowed scaling can be changed with the -dds option of mdrun.

3.17.3 Constraints in parallel

Since with domain decomposition parts of molecules can reside on different ranks, bond con-
straints can cross cell boundaries. Therefore a parallel constraint algorithm is required. GRO-
MACS uses the P-LINCS algorithm [48], which is the parallel version of the LINCS algorithm [47]
. (see 3.6.2). The P-LINCS procedure is illustrated in Fig. 3.14. When molecules cross the cell
boundaries, atoms in such molecules up to (lincs_order + 1) bonds away are communicated
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Figure 3.13: The zones to communicate to the rank of zone 0, see the text for details. rc and rb
are the non-bonded and bonded cut-off radii respectively, d is an example of a distance between
following, staggered boundaries of cells.

interaction range option default
non-bonded rc = max(rlist,rVdW,rCoul) mdp file

two-body bonded max(rmb,rc) mdrun -rdd starting conf. + 10%
multi-body bonded rmb mdrun -rdd starting conf. + 10%

constraints rcon mdrun -rcon est. from bond lengths
virtual sites rcon mdrun -rcon 0

Table 3.3: The interaction ranges with domain decomposition.

over the cell boundaries. Then, the normal LINCS algorithm can be applied to the local bonds
plus the communicated ones. After this procedure, the local bonds are correctly constrained, even
though the extra communicated ones are not. One coordinate communication step is required for
the initial LINCS step and one for each iteration. Forces do not need to be communicated.

3.17.4 Interaction ranges

Domain decomposition takes advantage of the locality of interactions. This means that there will
be limitations on the range of interactions. By default, mdrun tries to find the optimal balance
between interaction range and efficiency. But it can happen that a simulation stops with an error
message about missing interactions, or that a simulation might run slightly faster with shorter
interaction ranges. A list of interaction ranges and their default values is given in Table 3.3.

In most cases the defaults of mdrun should not cause the simulation to stop with an error message
of missing interactions. The range for the bonded interactions is determined from the distance be-
tween bonded charge-groups in the starting configuration, with 10% added for headroom. For the
constraints, the value of rcon is determined by taking the maximum distance that (lincs_order
+ 1) bonds can cover when they all connect at angles of 120 degrees. The actual constraint com-
munication is not limited by rcon, but by the minimum cell size LC , which has the following lower
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Figure 3.14: Example of the parallel setup of P-LINCS with one molecule split over three do-
main decomposition cells, using a matrix expansion order of 3. The top part shows which atom
coordinates need to be communicated to which cells. The bottom parts show the local constraints
(solid) and the non-local constraints (dashed) for each of the three cells.

limit:
LC ≥ max(rmb, rcon) (3.147)

Without dynamic load balancing the system is actually allowed to scale beyond this limit when
pressure scaling is used. Note that for triclinic boxes, LC is not simply the box diagonal compo-
nent divided by the number of cells in that direction, rather it is the shortest distance between the
triclinic cells borders. For rhombic dodecahedra this is a factor of

√
3/2 shorter along x and y.

When rmb > rc, mdrun employs a smart algorithm to reduce the communication. Simply
communicating all charge groups within rmb would increase the amount of communication enor-
mously. Therefore only charge-groups that are connected by bonded interactions to charge groups
which are not locally present are communicated. This leads to little extra communication, but also
to a slightly increased cost for the domain decomposition setup. In some cases, e.g. coarse-grained
simulations with a very short cut-off, one might want to set rmb by hand to reduce this cost.

3.17.5 Multiple-Program, Multiple-Data PME parallelization

Electrostatics interactions are long-range, therefore special algorithms are used to avoid summa-
tion over many atom pairs. In GROMACS this is usually . PME (sec. 4.8.2). Since with PME all
particles interact with each other, global communication is required. This will usually be the lim-
iting factor for scaling with domain decomposition. To reduce the effect of this problem, we have
come up with a Multiple-Program, Multiple-Data approach [5]. Here, some ranks are selected to
do only the PME mesh calculation, while the other ranks, called particle-particle (PP) ranks, do
all the rest of the work. For rectangular boxes the optimal PP to PME rank ratio is usually 3:1,



3.17. Domain decomposition 63

6 PP ranks 2 PME ranks8 PP/PME ranks

Figure 3.15: Example of 8 ranks without (left) and with (right) MPMD. The PME communication
(red arrows) is much higher on the left than on the right. For MPMD additional PP - PME coordi-
nate and force communication (blue arrows) is required, but the total communication complexity
is lower.

for rhombic dodecahedra usually 2:1. When the number of PME ranks is reduced by a factor of
4, the number of communication calls is reduced by about a factor of 16. Or put differently, we
can now scale to 4 times more ranks. In addition, for modern 4 or 8 core machines in a network,
the effective network bandwidth for PME is quadrupled, since only a quarter of the cores will be
using the network connection on each machine during the PME calculations.

mdrunwill by default interleave the PP and PME ranks. If the ranks are not number consecutively
inside the machines, one might want to use mdrun -ddorder pp_pme. For machines with a
real 3-D torus and proper communication software that assigns the ranks accordingly one should
use mdrun -ddorder cartesian.

To optimize the performance one should usually set up the cut-offs and the PME grid such that
the PME load is 25 to 33% of the total calculation load. grompp will print an estimate for this
load at the end and also mdrun calculates the same estimate to determine the optimal number
of PME ranks to use. For high parallelization it might be worthwhile to optimize the PME load
with the mdp settings and/or the number of PME ranks with the -npme option of mdrun. For
changing the electrostatics settings it is useful to know the accuracy of the electrostatics remains
nearly constant when the Coulomb cut-off and the PME grid spacing are scaled by the same factor.
Note that it is usually better to overestimate than to underestimate the number of PME ranks, since
the number of PME ranks is smaller than the number of PP ranks, which leads to less total waiting
time.

The PME domain decomposition can be 1-D or 2-D along the x and/or y axis. 2-D decomposition
is also known as pencil decomposition because of the shape of the domains at high parallelization.
1-D decomposition along the y axis can only be used when the PP decomposition has only 1 do-
main along x. 2-D PME decomposition has to have the number of domains along x equal to the
number of the PP decomposition. mdrun automatically chooses 1-D or 2-D PME decomposition
(when possible with the total given number of ranks), based on the minimum amount of commu-
nication for the coordinate redistribution in PME plus the communication for the grid overlap and
transposes. To avoid superfluous communication of coordinates and forces between the PP and
PME ranks, the number of DD cells in the x direction should ideally be the same or a multiple of
the number of PME ranks. By default, mdrun takes care of this issue.
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3.17.6 Domain decomposition flow chart

In Fig. 3.16 a flow chart is shown for domain decomposition with all possible communication for
different algorithms. For simpler simulations, the same flow chart applies, without the algorithms
and communication for the algorithms that are not used.

3.18 Implicit solvation

Implicit solvent models provide an efficient way of representing the electrostatic effects of solvent
molecules, while saving a large piece of the computations involved in an accurate, aqueous de-
scription of the surrounding water in molecular dynamics simulations. Implicit solvation models
offer several advantages compared with explicit solvation, including eliminating the need for the
equilibration of water around the solute, and the absence of viscosity, which allows the protein to
more quickly explore conformational space.

Implicit solvent calculations in GROMACS can be done using the generalized Born-formalism,
and the Still [70], HCT [71], and OBC [72] models are available for calculating the Born radii.

Here, the free energy Gsolv of solvation is the sum of three terms, a solvent-solvent cavity term
(Gcav), a solute-solvent van der Waals term (Gvdw), and finally a solvent-solute electrostatics
polarization term (Gpol).

The sum of Gcav and Gvdw corresponds to the (non-polar) free energy of solvation for a molecule
from which all charges have been removed, and is commonly called Gnp, calculated from the
total solvent accessible surface area multiplied with a surface tension. The total expression for the
solvation free energy then becomes:

Gsolv = Gnp +Gpol (3.148)

Under the generalized Born model, Gpol is calculated from the generalized Born equation [70]:

Gpol =

(
1− 1

ε

) n∑
i=1

n∑
j>i

qiqj√
r2
ij + bibj exp

(
−r2ij
4bibj

) (3.149)

In GROMACS, we have introduced the substitution [73]:

ci =
1√
bi

(3.150)

which makes it possible to introduce a cheap transformation to a new variable x when evaluating
each interaction, such that:

x =
rij√
bibj

= rijcicj (3.151)

In the end, the full re-formulation of 3.149 becomes:
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Figure 3.16: Flow chart showing the algorithms and communication (arrows) for a standard MD
simulation with virtual sites, constraints and separate PME-mesh ranks.
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Gpol =

(
1− 1

ε

) n∑
i=1

n∑
j>i

qiqj√
bibj

ξ(x) =

(
1− 1

ε

) n∑
i=1

qici

n∑
j>i

qjcj ξ(x) (3.152)

The non-polar part (Gnp) of Equation 3.148 is calculated directly from the Born radius of each
atom using a simple ACE type approximation by Schaefer et al. [74], including a simple loop
over all atoms. This requires only one extra solvation parameter, independent of atom type, but
differing slightly between the three Born radii models.



Chapter 4

Interaction function and force
fields

To accommodate the potential functions used in some popular force fields (see 4.10), GROMACS
offers a choice of functions, both for non-bonded interaction and for dihedral interactions. They
are described in the appropriate subsections.

The potential functions can be subdivided into three parts

1. Non-bonded: Lennard-Jones or Buckingham, and Coulomb or modified Coulomb. The non-
bonded interactions are computed on the basis of a neighbor list (a list of non-bonded atoms
within a certain radius), in which exclusions are already removed.

2. Bonded: covalent bond-stretching, angle-bending, improper dihedrals, and proper dihedrals.
These are computed on the basis of fixed lists.

3. Restraints: position restraints, angle restraints, distance restraints, orientation restraints and
dihedral restraints, all based on fixed lists.

4.1 Non-bonded interactions

Non-bonded interactions in GROMACS are pair-additive and centro-symmetric:

V (r1, . . . rN ) =
∑
i<j

Vij(rij); (4.1)

F i = −
∑
j

dVij(rij)

drij

rij
rij

= −F j (4.2)

The non-bonded interactions contain a repulsion term, a dispersion term, and a Coulomb term.
The repulsion and dispersion term are combined in either the Lennard-Jones (or 6-12 interaction),
or the Buckingham (or exp-6 potential). In addition, (partially) charged atoms act through the
Coulomb term.
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Figure 4.1: The Lennard-Jones interaction.

4.1.1 The Lennard-Jones interaction

The Lennard-Jones potential VLJ between two atoms equals:

VLJ(rij) =
C

(12)
ij

r12
ij

−
C

(6)
ij

r6
ij

(4.3)

See also Fig. 4.1 The parameters C(12)
ij and C(6)

ij depend on pairs of atom types; consequently they
are taken from a matrix of LJ-parameters. In the Verlet cut-off scheme, the potential is shifted by
a constant such that it is zero at the cut-off distance.

The force derived from this potential is:

F i(rij) =

12
C

(12)
ij

r13
ij

− 6
C

(6)
ij

r7
ij

 rij
rij

(4.4)

The LJ potential may also be written in the following form:

VLJ(rij) = 4εij

(σij
rij

)12

−
(
σij
rij

)6
 (4.5)

In constructing the parameter matrix for the non-bonded LJ-parameters, two types of combination
rules can be used within GROMACS, only geometric averages (type 1 in the input section of the
force-field file):

C
(6)
ij =

(
C

(6)
ii C

(6)
jj

)1/2

C
(12)
ij =

(
C

(12)
ii C

(12)
jj

)1/2 (4.6)

or, alternatively the Lorentz-Berthelot rules can be used. An arithmetic average is used to calculate
σij , while a geometric average is used to calculate εij (type 2):

σij = 1
2(σii + σjj)

εij = (εii εjj)
1/2 (4.7)
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Figure 4.2: The Buckingham interaction.

finally an geometric average for both parameters can be used (type 3):

σij = (σii σjj)
1/2

εij = (εii εjj)
1/2 (4.8)

This last rule is used by the OPLS force field.

4.1.2 Buckingham potential

The Buckingham potential has a more flexible and realistic repulsion term than the Lennard-Jones
interaction, but is also more expensive to compute. The potential form is:

Vbh(rij) = Aij exp(−Bijrij)−
Cij
r6
ij

(4.9)

See also Fig. 4.2. The force derived from this is:

F i(rij) =

[
AijBij exp(−Bijrij)− 6

Cij
r7
ij

]
rij
rij

(4.10)

4.1.3 Coulomb interaction

The Coulomb interaction between two charge particles is given by:

Vc(rij) = f
qiqj
εrrij

(4.11)

See also Fig. 4.3, where f = 1
4πε0

= 138.935 485 (see chapter 2)

The force derived from this potential is:

F i(rij) = f
qiqj
εrr2

ij

rij
rij

(4.12)
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Figure 4.3: The Coulomb interaction (for particles with equal signed charge) with and without
reaction field. In the latter case εr was 1, εrf was 78, and rc was 0.9 nm. The dot-dashed line is
the same as the dashed line, except for a constant.

A plain Coulomb interaction should only be used without cut-off or when all pairs fall within the
cut-off, since there is an abrupt, large change in the force at the cut-off. In case you do want to use
a cut-off, the potential can be shifted by a constant to make the potential the integral of the force.
With the group cut-off scheme, this shift is only applied to non-excluded pairs. With the Verlet
cut-off scheme, the shift is also applied to excluded pairs and self interactions, which makes the
potential equivalent to a reaction field with εrf = 1 (see below).

In GROMACS the relative dielectric constant εr may be set in the in the input for grompp.

4.1.4 Coulomb interaction with reaction field

The Coulomb interaction can be modified for homogeneous systems by assuming a constant di-
electric environment beyond the cut-off rc with a dielectric constant of εrf . The interaction then
reads:

Vcrf = f
qiqj
εrrij

[
1 +

εrf − εr
2εrf + εr

r3
ij

r3
c

]
− f qiqj

εrrc

3εrf
2εrf + εr

(4.13)

in which the constant expression on the right makes the potential zero at the cut-off rc. For charged
cut-off spheres this corresponds to neutralization with a homogeneous background charge. We can
rewrite eqn. 4.13 for simplicity as

Vcrf = f
qiqj
εr

[
1

rij
+ krf r

2
ij − crf

]
(4.14)

with

krf =
1

r3
c

εrf − εr
(2εrf + εr)

(4.15)

crf =
1

rc
+ krf r

2
c =

1

rc

3εrf
(2εrf + εr)

(4.16)
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For large εrf the krf goes to r−3
c /2, while for εrf = εr the correction vanishes. In Fig. 4.3 the

modified interaction is plotted, and it is clear that the derivative with respect to rij (= -force) goes
to zero at the cut-off distance. The force derived from this potential reads:

F i(rij) = f
qiqj
εr

[
1

r2
ij

− 2krfrij

]
rij
rij

(4.17)

The reaction-field correction should also be applied to all excluded atoms pairs, including self
pairs, in which case the normal Coulomb term in eqns. 4.13 and 4.17 is absent.

Tironi et al. have introduced a generalized reaction field in which the dielectric continuum beyond
the cut-off rc also has an ionic strength I [75]. In this case we can rewrite the constants krf and
crf using the inverse Debye screening length κ:

κ2 =
2I F 2

ε0εrfRT
=

F 2

ε0εrfRT

K∑
i=1

ciz
2
i (4.18)

krf =
1

r3
c

(εrf − εr)(1 + κrc) + 1
2εrf (κrc)

2

(2εrf + εr)(1 + κrc) + εrf (κrc)2
(4.19)

crf =
1

rc

3εrf (1 + κrc + 1
2(κrc)

2)

(2εrf + εr)(1 + κrc) + εrf (κrc)2
(4.20)

where F is Faraday’s constant, R is the ideal gas constant, T the absolute temperature, ci the
molar concentration for species i and zi the charge number of species i where we haveK different
species. In the limit of zero ionic strength (κ = 0) eqns. 4.19 and 4.20 reduce to the simple forms
of eqns. 4.15 and 4.16 respectively.

4.1.5 Modified non-bonded interactions

In GROMACS, the non-bonded potentials can be modified by a shift function. The purpose of this
is to replace the truncated forces by forces that are continuous and have continuous derivatives
at the cut-off radius. With such forces the timestep integration produces much smaller errors and
there are no such complications as creating charges from dipoles by the truncation procedure. In
fact, by using shifted forces there is no need for charge groups in the construction of neighbor lists.
However, the shift function produces a considerable modification of the Coulomb potential. Unless
the “missing” long-range potential is properly calculated and added (through the use of PPPM,
Ewald, or PME), the effect of such modifications must be carefully evaluated. The modification
of the Lennard-Jones dispersion and repulsion is only minor, but it does remove the noise caused
by cut-off effects.

There is no fundamental difference between a switch function (which multiplies the potential with
a function) and a shift function (which adds a function to the force or potential) [76]. The switch
function is a special case of the shift function, which we apply to the force function F (r), related
to the electrostatic or van der Waals force acting on particle i by particle j as:

F i = cF (rij)
rij
rij

(4.21)
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For pure Coulomb or Lennard-Jones interactions F (r) = Fα(r) = r−(α+1). The shifted force
Fs(r) can generally be written as:

Fs(r) = Fα(r) r < r1

Fs(r) = Fα(r) + S(r) r1 ≤ r < rc

Fs(r) = 0 rc ≤ r

(4.22)

When r1 = 0 this is a traditional shift function, otherwise it acts as a switch function. The
corresponding shifted coulomb potential then reads:

Vs(rij) = fΦs(rij)qiqj (4.23)

where Φ(r) is the potential function

Φs(r) =

∫ ∞
r

Fs(x) dx (4.24)

The GROMACS shift function should be smooth at the boundaries, therefore the following bound-
ary conditions are imposed on the shift function:

S(r1) = 0
S′(r1) = 0
S(rc) = −Fα(rc)
S′(rc) = −F ′α(rc)

(4.25)

A 3rd degree polynomial of the form

S(r) = A(r − r1)2 +B(r − r1)3 (4.26)

fulfills these requirements. The constants A and B are given by the boundary condition at rc:

A = −(α+ 4)rc − (α+ 1)r1

rα+2
c (rc − r1)2

B =
(α+ 3)rc − (α+ 1)r1

rα+2
c (rc − r1)3

(4.27)

Thus the total force function is:

Fs(r) =
α

rα+1
+A(r − r1)2 +B(r − r1)3 (4.28)

and the potential function reads:

Φ(r) =
1

rα
− A

3
(r − r1)3 − B

4
(r − r1)4 − C (4.29)

where

C =
1

rαc
− A

3
(rc − r1)3 − B

4
(rc − r1)4 (4.30)
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Figure 4.4: The Coulomb Force, Shifted Force and Shift Function S(r), using r1 = 2 and rc = 4.

When r1 = 0, the modified Coulomb force function is

Fs(r) =
1

r2
− 5r2

r4
c

+
4r3

r5
c

(4.31)

which is identical to the function recommended to be used as a short-range function in conjunction
with a Poisson solver for the long-range part [77]. The modified Coulomb potential function is:

Φ(r) =
1

r
− 5

3rc
+

5r3

3r4
c

− r4

r5
c

(4.32)

See also Fig. 4.4.

4.1.6 Modified short-range interactions with Ewald summation

When Ewald summation or particle-mesh Ewald is used to calculate the long-range interactions,
the short-range Coulomb potential must also be modified, similar to the switch function above. In
this case the short range potential is given by:

V (r) = f
erfc(βrij)

rij
qiqj , (4.33)

where β is a parameter that determines the relative weight between the direct space sum and the
reciprocal space sum and erfc(x) is the complementary error function. For further details on long-
range electrostatics, see sec. 4.8.
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Figure 4.5: Principle of bond stretching (left), and the bond stretching potential (right).

4.2 Bonded interactions

Bonded interactions are based on a fixed list of atoms. They are not exclusively pair interac-
tions, but include 3- and 4-body interactions as well. There are bond stretching (2-body), bond
angle (3-body), and dihedral angle (4-body) interactions. A special type of dihedral interaction
(called improper dihedral) is used to force atoms to remain in a plane or to prevent transition to a
configuration of opposite chirality (a mirror image).

4.2.1 Bond stretching

Harmonic potential

The bond stretching between two covalently bonded atoms i and j is represented by a harmonic
potential:

Vb (rij) =
1

2
kbij(rij − bij)2 (4.34)

See also Fig. 4.5, with the force given by:

F i(rij) = kbij(rij − bij)
rij
rij

(4.35)

Fourth power potential

In the GROMOS-96 force field [78], the covalent bond potential is, for reasons of computational
efficiency, written as:

Vb (rij) =
1

4
kbij

(
r2
ij − b2ij

)2
(4.36)

The corresponding force is:
F i(rij) = kbij(r

2
ij − b2ij) rij (4.37)
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The force constants for this form of the potential are related to the usual harmonic force constant
kb,harm (sec. 4.2.1) as

2kbb2ij = kb,harm (4.38)

The force constants are mostly derived from the harmonic ones used in GROMOS-87 [79]. Al-
though this form is computationally more efficient (because no square root has to be evaluated), it
is conceptually more complex. One particular disadvantage is that since the form is not harmonic,
the average energy of a single bond is not equal to 1

2kT as it is for the normal harmonic potential.

4.2.2 Morse potential bond stretching

For some systems that require an anharmonic bond stretching potential, the Morse potential [80]
between two atoms i and j is available in GROMACS. This potential differs from the harmonic
potential in that it has an asymmetric potential well and a zero force at infinite distance. The
functional form is:

Vmorse(rij) = Dij [1− exp(−βij(rij − bij))]2, (4.39)

See also Fig. 4.6, and the corresponding force is:

Fmorse(rij) = 2Dijβijrij exp(−βij(rij − bij))∗
[1− exp(−βij(rij − bij))]

rij
rij ,

(4.40)

where Dij is the depth of the well in kJ/mol, βij defines the steepness of the well (in nm−1), and
bij is the equilibrium distance in nm. The steepness parameter βij can be expressed in terms of
the reduced mass of the atoms i and j, the fundamental vibration frequency ωij and the well depth
Dij :

βij = ωij

√
µij

2Dij
(4.41)

and because ω =
√
k/µ, one can rewrite βij in terms of the harmonic force constant kij :

βij =

√
kij

2Dij
(4.42)

For small deviations (rij − bij), one can approximate the exp-term to first-order using a Taylor
expansion:

exp(−x) ≈ 1− x (4.43)

and substituting eqn. 4.42 and eqn. 4.43 in the functional form:

Vmorse(rij) = Dij [1− exp(−βij(rij − bij))]2

= Dij [1− (1−
√

kij
2Dij

(rij − bij))]2

= 1
2kij(rij − bij))

2

(4.44)

we recover the harmonic bond stretching potential.
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Figure 4.6: The Morse potential well, with bond length 0.15 nm.

4.2.3 Cubic bond stretching potential

Another anharmonic bond stretching potential that is slightly simpler than the Morse potential
adds a cubic term in the distance to the simple harmonic form:

Vb (rij) = kbij(rij − bij)2 + kbijk
cub
ij (rij − bij)3 (4.45)

A flexible water model (based on the SPC water model [81]) including a cubic bond stretching
potential for the O-H bond was developed by Ferguson [82]. This model was found to yield a
reasonable infrared spectrum. The Ferguson water model is available in the GROMACS library
(flexwat-ferguson.itp). It should be noted that the potential is asymmetric: overstretching
leads to infinitely low energies. The integration timestep is therefore limited to 1 fs.

The force corresponding to this potential is:

F i(rij) = 2kbij(rij − bij)
rij
rij

+ 3kbijk
cub
ij (rij − bij)2 rij

rij
(4.46)

4.2.4 FENE bond stretching potential

In coarse-grained polymer simulations the beads are often connected by a FENE (finitely extensi-
ble nonlinear elastic) potential [83]:

VFENE(rij) = −1

2
kbijb

2
ij log

(
1−

r2
ij

b2ij

)
(4.47)

The potential looks complicated, but the expression for the force is simpler:

FFENE(rij) = −kbij

(
1−

r2
ij

b2ij

)−1

rij (4.48)

At short distances the potential asymptotically goes to a harmonic potential with force constant
kb, while it diverges at distance b.
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Figure 4.7: Principle of angle vibration (left) and the bond angle potential (right).

4.2.5 Harmonic angle potential

The bond-angle vibration between a triplet of atoms i - j - k is also represented by a harmonic
potential on the angle θijk

Va(θijk) =
1

2
kθijk(θijk − θ0

ijk)
2 (4.49)

As the bond-angle vibration is represented by a harmonic potential, the form is the same as the
bond stretching (Fig. 4.5).

The force equations are given by the chain rule:

F i = −dVa(θijk)
dri

F k = −dVa(θijk)
drk

F j = −F i − F k

where θijk = arccos
(rij · rkj)
rijrkj

(4.50)

The numbering i, j, k is in sequence of covalently bonded atoms. Atom j is in the middle; atoms
i and k are at the ends (see Fig. 4.7). Note that in the input in topology files, angles are given in
degrees and force constants in kJ/mol/rad2.

4.2.6 Cosine based angle potential

In the GROMOS-96 force field a simplified function is used to represent angle vibrations:

Va(θijk) =
1

2
kθijk

(
cos(θijk)− cos(θ0

ijk)
)2

(4.51)

where
cos(θijk) =

rij · rkj
rijrkj

(4.52)

The corresponding force can be derived by partial differentiation with respect to the atomic posi-
tions. The force constants in this function are related to the force constants in the harmonic form
kθ,harm (4.2.5) by:

kθ sin2(θ0
ijk) = kθ,harm (4.53)
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Figure 4.8: Bending angle potentials: cosine harmonic (solid black line), angle harmonic (dashed
black line) and restricted bending (red) with the same bending constant kθ = 85 kJ mol−1 and
equilibrium angle θ0 = 130◦. The orange line represents the sum of a cosine harmonic (k = 50
kJ mol−1) with a restricted bending (k = 25 kJ mol−1) potential, both with θ0 = 130◦.

In the GROMOS-96 manual there is a much more complicated conversion formula which is tem-
perature dependent. The formulas are equivalent at 0 K and the differences at 300 K are on the
order of 0.1 to 0.2%. Note that in the input in topology files, angles are given in degrees and force
constants in kJ/mol.

4.2.7 Restricted bending potential

The restricted bending (ReB) potential [84] prevents the bending angle θ from reaching the 180◦

value. In this way, the numerical instabilities due to the calculation of the torsion angle and
potential are eliminated when performing coarse-grained molecular dynamics simulations.

To systematically hinder the bending angles from reaching the 180◦ value, the bending potential
4.51 is divided by a sin2 θ factor:

VReB(θi) =
1

2
kθ

(cos θi − cos θ0)2

sin2 θi
. (4.54)

Figure Fig. 4.8 shows the comparison between the ReB potential, 4.54, and the standard one 4.51.
The wall of the ReB potential is very repulsive in the region close to 180◦ and, as a result, the
bending angles are kept within a safe interval, far from instabilities. The power 2 of sin θi in the
denominator has been chosen to guarantee this behavior and allows an elegant differentiation:

FReB(θi) =
2kθ

sin4 θi
(cos θi − cos θ0)(1− cos θi cos θ0)

∂ cos θi
∂~rk

. (4.55)
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Due to its construction, the restricted bending potential cannot be used for equilibrium θ0 values
too close to 0◦ or 180◦ (from experience, at least 10◦ difference is recommended). It is very
important that, in the starting configuration, all the bending angles have to be in the safe interval
to avoid initial instabilities. This bending potential can be used in combination with any form
of torsion potential. It will always prevent three consecutive particles from becoming collinear
and, as a result, any torsion potential will remain free of singularities. It can be also added to a
standard bending potential to affect the angle around 180◦, but to keep its original form around the
minimum (see the orange curve in Fig. 4.8).

4.2.8 Urey-Bradley potential

The Urey-Bradley bond-angle vibration between a triplet of atoms i - j - k is represented by a
harmonic potential on the angle θijk and a harmonic correction term on the distance between the
atoms i and k. Although this can be easily written as a simple sum of two terms, it is convenient
to have it as a single entry in the topology file and in the output as a separate energy term. It is
used mainly in the CHARMm force field [85]. The energy is given by:

Va(θijk) =
1

2
kθijk(θijk − θ0

ijk)
2 +

1

2
kUBijk (rik − r0

ik)
2 (4.56)

The force equations can be deduced from sections 4.2.1 and 4.2.5.

4.2.9 Bond-Bond cross term

The bond-bond cross term for three particles i, j, k forming bonds i− j and k− j is given by [86]:

Vrr′ = krr′ (|ri − rj | − r1e) (|rk − rj | − r2e) (4.57)

where krr′ is the force constant, and r1e and r2e are the equilibrium bond lengths of the i− j and
k − j bonds respectively. The force associated with this potential on particle i is:

F i = −krr′ (|rk − rj | − r2e)
ri − rj
|ri − rj |

(4.58)

The force on atom k can be obtained by swapping i and k in the above equation. Finally, the force
on atom j follows from the fact that the sum of internal forces should be zero: F j = −F i − F k.

4.2.10 Bond-Angle cross term

The bond-angle cross term for three particles i, j, k forming bonds i−j and k−j is given by [86]:

Vrθ = krθ (|ri − rk| − r3e) (|ri − rj | − r1e + |rk − rj | − r2e) (4.59)

where krθ is the force constant, r3e is the i − k distance, and the other constants are the same as
in Equation 4.57. The force associated with the potential on atom i is:

F i = −krθ

[
(|ri − rk| − r3e)

ri − rj
|ri − rj |

+ (|ri − rj | − r1e + |rk − rj | − r2e)
ri − rk
|ri − rk|

]
(4.60)
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Figure 4.9: Principle of improper dihedral angles. Out of plane bending for rings (left), sub-
stituents of rings (middle), out of tetrahedral (right). The improper dihedral angle ξ is defined as
the angle between planes (i,j,k) and (j,k,l) in all cases.

4.2.11 Quartic angle potential

For special purposes there is an angle potential that uses a fourth order polynomial:

Vq(θijk) =
5∑

n=0

Cn(θijk − θ0
ijk)

n (4.61)

4.2.12 Improper dihedrals

Improper dihedrals are meant to keep planar groups (e.g. aromatic rings) planar, or to prevent
molecules from flipping over to their mirror images, see Fig. 4.9.

Improper dihedrals: harmonic type

The simplest improper dihedral potential is a harmonic potential; it is plotted in Fig. 4.10.

Vid(ξijkl) =
1

2
kξ(ξijkl − ξ0)2 (4.62)

Since the potential is harmonic it is discontinuous, but since the discontinuity is chosen at 180◦

distance from ξ0 this will never cause problems. Note that in the input in topology files, angles are
given in degrees and force constants in kJ/mol/rad2.

Improper dihedrals: periodic type

This potential is identical to the periodic proper dihedral (see below). There is a separate dihedral
type for this (type 4) only to be able to distinguish improper from proper dihedrals in the parameter
section and the output.

4.2.13 Proper dihedrals

For the normal dihedral interaction there is a choice of either the GROMOS periodic function or a
function based on expansion in powers of cosφ (the so-called Ryckaert-Bellemans potential). This
choice has consequences for the inclusion of special interactions between the first and the fourth
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Figure 4.10: Improper dihedral potential.

atom of the dihedral quadruple. With the periodic GROMOS potential a special 1-4 LJ-interaction
must be included; with the Ryckaert-Bellemans potential for alkanes the 1-4 interactions must be
excluded from the non-bonded list. Note: Ryckaert-Bellemans potentials are also used in e.g. the
OPLS force field in combination with 1-4 interactions. You should therefore not modify topologies
generated by pdb2gmx in this case.

Proper dihedrals: periodic type

Proper dihedral angles are defined according to the IUPAC/IUB convention, where φ is the angle
between the ijk and the jkl planes, with zero corresponding to the cis configuration (i and l on
the same side). There are two dihedral function types in GROMACS topology files. There is the
standard type 1 which behaves like any other bonded interactions. For certain force fields, type 9 is
useful. Type 9 allows multiple potential functions to be applied automatically to a single dihedral
in the [ dihedral ] section when multiple parameters are defined for the same atomtypes in
the [ dihedraltypes ] section.

Vd(φijkl) = kφ(1 + cos(nφ− φs)) (4.63)

Proper dihedrals: Ryckaert-Bellemans function

For alkanes, the following proper dihedral potential is often used (see Fig. 4.12):

Vrb(φijkl) =
5∑

n=0

Cn(cos(ψ))n, (4.64)

where ψ = φ− 180◦.
Note: A conversion from one convention to another can be achieved by multiplying every coeffi-
cient Cn by (−1)n.

An example of constants for C is given in Table 4.1.



82 Chapter 4. Interaction function and force fields

j

k

l

i
0.0 90.0 180.0 270.0 360.0

φ

0.0

20.0

40.0

60.0

80.0

V
d 

(k
J 

m
ol

e–1
)

Figure 4.11: Principle of proper dihedral angle (left, in trans form) and the dihedral angle potential
(right).

C0 9.28 C2 -13.12 C4 26.24
C1 12.16 C3 -3.06 C5 -31.5

Table 4.1: Constants for Ryckaert-Bellemans potential (kJ mol−1).
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Figure 4.12: Ryckaert-Bellemans dihedral potential.
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(Note: The use of this potential implies exclusion of LJ interactions between the first and the last
atom of the dihedral, and ψ is defined according to the “polymer convention” (ψtrans = 0).)

The RB dihedral function can also be used to include Fourier dihedrals (see below):

Vrb(φijkl) =
1

2
[F1(1 + cos(φ)) + F2(1− cos(2φ)) + F3(1 + cos(3φ)) + F4(1− cos(4φ))]

(4.65)
Because of the equalities cos(2φ) = 2 cos2(φ)−1, cos(3φ) = 4 cos3(φ)−3 cos(φ) and cos(4φ) =
8 cos4(φ)− 8 cos2(φ) + 1 one can translate the OPLS parameters to Ryckaert-Bellemans param-
eters as follows:

C0 = F2 + 1
2(F1 + F3)

C1 = 1
2(−F1 + 3F3)

C2 = −F2 + 4F4

C3 = −2F3

C4 = −4F4

C5 = 0

(4.66)

with OPLS parameters in protein convention and RB parameters in polymer convention (this yields
a minus sign for the odd powers of cos(φ)).
Note: Mind the conversion from kcal mol−1 for literature OPLS and RB parameters to kJ mol−1

in GROMACS.

Proper dihedrals: Fourier function

The OPLS potential function is given as the first three or four [87] cosine terms of a Fourier series.
In GROMACS the four term function is implemented:

VF (φijkl) =
1

2
[C1(1 + cos(φ)) + C2(1− cos(2φ)) + C3(1 + cos(3φ)) + C4(1 + cos(4φ))] ,

(4.67)
Internally, GROMACS uses the Ryckaert-Bellemans code to compute Fourier dihedrals (see above),
because this is more efficient.
Note: Mind the conversion from kcal mol−1 for literature OPLS parameters to kJ mol−1 in GRO-
MACS.

Proper dihedrals: Restricted torsion potential

In a manner very similar to the restricted bending potential (see 4.2.7), a restricted torsion/dihedral
potential is introduced:

VReT(φi) =
1

2
kφ

(cosφi − cosφ0)2

sin2 φi
(4.68)

with the advantages of being a function of cosφ (no problems taking the derivative of sinφ) and
of keeping the torsion angle at only one minimum value. In this case, the factor sin2 φ does not
allow the dihedral angle to move from the [−180◦:0] to [0:180◦] interval, i.e. it cannot have
maxima both at −φ0 and +φ0 maxima, but only one of them. For this reason, all the dihedral



84 Chapter 4. Interaction function and force fields

angles of the starting configuration should have their values in the desired angles interval and the
the equilibrium φ0 value should not be too close to the interval limits (as for the restricted bending
potential, described in 4.2.7, at least 10◦ difference is recommended).

Proper dihedrals: Combined bending-torsion potential

When the four particles forming the dihedral angle become collinear (this situation will never
happen in atomistic simulations, but it can occur in coarse-grained simulations) the calculation of
the torsion angle and potential leads to numerical instabilities. One way to avoid this is to use the
restricted bending potential (see 4.2.7) that prevents the dihedral from reaching the 180◦ value.

Another way is to disregard any effects of the dihedral becoming ill-defined, keeping the dihedral
force and potential calculation continuous in entire angle range by coupling the torsion potential
(in a cosine form) with the bending potentials of the adjacent bending angles in a unique expres-
sion:

VCBT(θi−1, θi, φi) = kφ sin3 θi−1 sin3 θi

4∑
n=0

an cosn φi. (4.69)

This combined bending-torsion (CBT) potential has been proposed by [88] for polymer melt sim-
ulations and is extensively described in [84].

This potential has two main advantages:

• it does not only depend on the dihedral angle φi (between the i − 2, i − 1, i and i + 1
beads) but also on the bending angles θi−1 and θi defined from three adjacent beads (i− 2,
i − 1 and i, and i − 1, i and i + 1, respectively). The two sin3 θ pre-factors, tentatively
suggested by [89] and theoretically discussed by [90], cancel the torsion potential and force
when either of the two bending angles approaches the value of 180◦.

• its dependence on φi is expressed through a polynomial in cosφi that avoids the singularities
in φ = 0◦ or 180◦ in calculating the torsional force.

These two properties make the CBT potential well-behaved for MD simulations with weak con-
straints on the bending angles or even for steered / non-equilibrium MD in which the bending and
torsion angles suffer major modifications. When using the CBT potential, the bending potentials
for the adjacent θi−1 and θi may have any form. It is also possible to leave out the two angle
bending terms (θi−1 and θi) completely. Fig. 4.13 illustrates the difference between a torsion po-
tential with and without the sin3 θ factors (blue and gray curves, respectively). Additionally, the
derivative of VCBT with respect to the Cartesian variables is straightforward:

∂VCBT(θi−1, θi, φi)

∂~rl
=
∂VCBT

∂θi−1

∂θi−1

∂~rl
+
∂VCBT

∂θi

∂θi
∂~rl

+
∂VCBT

∂φi

∂φi
∂~rl

(4.70)

The CBT is based on a cosine form without multiplicity, so it can only be symmetrical around 0◦.
To obtain an asymmetrical dihedral angle distribution (e.g. only one maximum in [−180◦:180◦]
interval), a standard torsion potential such as harmonic angle or periodic cosine potentials should
be used instead of a CBT potential. However, these two forms have the inconveniences of the
force derivation (1/ sinφ) and of the alignment of beads (θi or θi−1 = 0◦, 180◦). Coupling such
non-cosφ potentials with sin3 θ factors does not improve simulation stability since there are cases
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Figure 4.13: Blue: surface plot of the combined bending-torsion potential (4.69 with k = 10
kJ mol−1, a0 = 2.41, a1 = −2.95, a2 = 0.36, a3 = 1.33) when, for simplicity, the bending
angles behave the same (θ1 = θ2 = θ). Gray: the same torsion potential without the sin3 θ terms
(Ryckaert-Bellemans type). φ is the dihedral angle.

in which θ and φ are simultaneously 180◦. The integration at this step would be possible (due to
the cancelling of the torsion potential) but the next step would be singular (θ is not 180◦ and φ is
very close to 180◦).

4.2.14 Tabulated bonded interaction functions

For full flexibility, any functional shape can be used for bonds, angles and dihedrals through user-
supplied tabulated functions. The functional shapes are:

Vb(rij) = k f bn(rij) (4.71)

Va(θijk) = k fan(θijk) (4.72)

Vd(φijkl) = k fdn(φijkl) (4.73)

where k is a force constant in units of energy and f is a cubic spline function; for details see
6.10.1. For each interaction, the force constant k and the table number n are specified in the
topology. There are two different types of bonds, one that generates exclusions (type 8) and one
that does not (type 9). For details see Table 5.5. The table files are supplied to the mdrun program.
After the table file name an underscore, the letter “b” for bonds, “a” for angles or “d” for dihedrals
and the table number are appended. For example, for a bond with n = 0 (and using the default
table file name) the table is read from the file table_b0.xvg. Multiple tables can be supplied
simply by using different values of n, and are applied to the appropriate bonds, as specified in the
topology (Table 5.5). The format for the table files is three columns with x, f(x), −f ′(x), where
x should be uniformly-spaced. Requirements for entries in the topology are given in Table 5.5.
The setup of the tables is as follows:
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bonds: x is the distance in nm. For distances beyond the table length, mdrun will quit with an
error message.
angles: x is the angle in degrees. The table should go from 0 up to and including 180 degrees; the
derivative is taken in degrees.
dihedrals: x is the dihedral angle in degrees. The table should go from -180 up to and including
180 degrees; the IUPAC/IUB convention is used, i.e. zero is cis, the derivative is taken in degrees.

4.3 Restraints

Special potentials are used for imposing restraints on the motion of the system, either to avoid
disastrous deviations, or to include knowledge from experimental data. In either case they are not
really part of the force field and the reliability of the parameters is not important. The potential
forms, as implemented in GROMACS, are mentioned just for the sake of completeness. Restraints
and constraints refer to quite different algorithms in GROMACS.

4.3.1 Position restraints

These are used to restrain particles to fixed reference positions Ri. They can be used during
equilibration in order to avoid drastic rearrangements of critical parts (e.g. to restrain motion in a
protein that is subjected to large solvent forces when the solvent is not yet equilibrated). Another
application is the restraining of particles in a shell around a region that is simulated in detail, while
the shell is only approximated because it lacks proper interaction from missing particles outside
the shell. Restraining will then maintain the integrity of the inner part. For spherical shells, it is a
wise procedure to make the force constant depend on the radius, increasing from zero at the inner
boundary to a large value at the outer boundary. This feature has not, however, been implemented
in GROMACS.

The following form is used:

Vpr(ri) =
1

2
kpr|ri −Ri|2 (4.74)

The potential is plotted in Fig. 4.14.

The potential form can be rewritten without loss of generality as:

Vpr(ri) =
1

2

[
kxpr(xi −Xi)

2 x̂ + kypr(yi − Yi)2 ŷ + kzpr(zi − Zi)2 ẑ
]

(4.75)

Now the forces are:
F xi = −kxpr (xi −Xi)

F yi = −kypr (yi − Yi)
F zi = −kzpr (zi − Zi)

(4.76)

Using three different force constants the position restraints can be turned on or off in each spatial
dimension; this means that atoms can be harmonically restrained to a plane or a line. Position
restraints are applied to a special fixed list of atoms. Such a list is usually generated by the
pdb2gmx program.
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Figure 4.14: Position restraint potential.
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Figure 4.15: Flat-bottomed position restraint potential. (A) Not inverted, (B) inverted.

4.3.2 Flat-bottomed position restraints

Flat-bottomed position restraints can be used to restrain particles to part of the simulation volume.
No force acts on the restrained particle within the flat-bottomed region of the potential, however a
harmonic force acts to move the particle to the flat-bottomed region if it is outside it. It is possible
to apply normal and flat-bottomed position restraints on the same particle (however, only with the
same reference positionRi). The following general potential is used (Figure 4.15A):

Vfb(ri) =
1

2
kfb[dg(ri;Ri)− rfb]2H[dg(ri;Ri)− rfb], (4.77)

where Ri is the reference position, rfb is the distance from the center with a flat potential, kfb the
force constant, and H is the Heaviside step function. The distance dg(ri;Ri) from the reference
position depends on the geometry g of the flat-bottomed potential.

The following geometries for the flat-bottomed potential are supported:
Sphere (g = 1): The particle is kept in a sphere of given radius. The force acts towards the center
of the sphere. The following distance calculation is used:

dg(ri;Ri) = |ri −Ri| (4.78)
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Cylinder (g = 2): The particle is kept in a cylinder of given radius parallel to the z-axis. The
force from the flat-bottomed potential acts towards the axis of the cylinder. The z-component of
the force is zero.

dg(ri;Ri) =
√

(xi −Xi)2 + (yi − Yi)2 (4.79)

Layer (g = 3, 4, 5): The particle is kept in a layer defined by the thickness and the normal of the
layer. The layer normal can be parallel to the x, y, or z-axis. The force acts parallel to the layer
normal.

dg(ri;Ri) = |xi −Xi|, or dg(ri;Ri) = |yi − Yi|, or dg(ri;Ri) = |zi − Zi|. (4.80)

It is possible to apply multiple independent flat-bottomed position restraints of different geometry
on one particle. For example, applying a cylinder and a layer in z keeps a particle within a disk.
Applying three layers in x, y, and z keeps the particle within a cuboid.

In addition, it is possible to invert the restrained region with the unrestrained region, leading to
a potential that acts to keep the particle outside of the volume defined by Ri, g, and rfb. That
feature is switched on by defining a negative rfb in the topology. The following potential is used
(Figure 4.15B):

V inv
fb (ri) =

1

2
kfb[dg(ri;Ri)− |rfb|]2H[−(dg(ri;Ri)− |rfb|)]. (4.81)

4.3.3 Angle restraints

These are used to restrain the angle between two pairs of particles or between one pair of particles
and the z-axis. The functional form is similar to that of a proper dihedral. For two pairs of atoms:

Var(ri, rj , rk, rl) = kar(1− cos(n(θ − θ0))), where θ = arccos

(
rj − ri
‖rj − ri‖

· rl − rk
‖rl − rk‖

)
(4.82)

For one pair of atoms and the z-axis:

Var(ri, rj) = kar(1− cos(n(θ − θ0))), where θ = arccos

 rj − ri
‖rj − ri‖

·

 0
0
1


 (4.83)

A multiplicity (n) of 2 is useful when you do not want to distinguish between parallel and anti-
parallel vectors. The equilibrium angle θ should be between 0 and 180 degrees for multiplicity 1
and between 0 and 90 degrees for multiplicity 2.

4.3.4 Dihedral restraints

These are used to restrain the dihedral angle φ defined by four particles as in an improper dihedral
(sec. 4.2.12) but with a slightly modified potential. Using:

φ′ = (φ− φ0) MOD 2π (4.84)
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where φ0 is the reference angle, the potential is defined as:

Vdihr(φ
′) =


1
2kdihr(φ

′ − φ0 −∆φ)2 for φ′ > ∆φ

0 for φ′ ≤ ∆φ
(4.85)

where ∆φ is a user defined angle and kdihr is the force constant. Note that in the input in topology
files, angles are given in degrees and force constants in kJ/mol/rad2.

4.3.5 Distance restraints

Distance restraints add a penalty to the potential when the distance between specified pairs of
atoms exceeds a threshold value. They are normally used to impose experimental restraints from,
for instance, experiments in nuclear magnetic resonance (NMR), on the motion of the system.
Thus, MD can be used for structure refinement using NMR data. In GROMACS there are three
ways to impose restraints on pairs of atoms:

• Simple harmonic restraints: use [ bonds ] type 6 . (see sec. 5.4).

• Piecewise linear/harmonic restraints: [ bonds ] type 10.

• Complex NMR distance restraints, optionally with pair, time and/or ensemble averaging.

The last two options will be detailed now.

The potential form for distance restraints is quadratic below a specified lower bound and between
two specified upper bounds, and linear beyond the largest bound (see Fig. 4.16).

Vdr(rij) =



1
2kdr(rij − r0)2 for rij < r0

0 for r0 ≤ rij < r1

1
2kdr(rij − r1)2 for r1 ≤ rij < r2

1
2kdr(r2 − r1)(2rij − r2 − r1) for r2 ≤ rij

(4.86)

The forces are

F i =



−kdr(rij − r0)
rij
rij

for rij < r0

0 for r0 ≤ rij < r1

−kdr(rij − r1)
rij
rij

for r1 ≤ rij < r2

−kdr(r2 − r1)
rij
rij

for r2 ≤ rij

(4.87)

For restraints not derived from NMR data, this functionality will usually suffice and a section of
[ bonds ] type 10 can be used to apply individual restraints between pairs of atoms, see 5.7.1.
For applying restraints derived from NMR measurements, more complex functionality might be re-
quired, which is provided through the [ distance_restraints ] section and is described
below.



90 Chapter 4. Interaction function and force fields

0 0.1 0.2 0.3 0.4 0.5
r (nm)

0

5

10

15

V
di

sr
e 

(k
J 

m
ol

−
1 )

r0 r1 r2

Figure 4.16: Distance Restraint potential.

Time averaging

Distance restraints based on instantaneous distances can potentially reduce the fluctuations in a
molecule significantly. This problem can be overcome by restraining to a time averaged dis-
tance [91]. The forces with time averaging are:

F i =



−kadr(r̄ij − r0)
rij
rij

for r̄ij < r0

0 for r0 ≤ r̄ij < r1

−kadr(r̄ij − r1)
rij
rij

for r1 ≤ r̄ij < r2

−kadr(r2 − r1)
rij
rij

for r2 ≤ r̄ij

(4.88)

where r̄ij is given by an exponential running average with decay time τ :

r̄ij = < r−3
ij >−1/3 (4.89)

The force constant kadr is switched on slowly to compensate for the lack of history at the beginning
of the simulation:

kadr = kdr

(
1− exp

(
− t
τ

))
(4.90)

Because of the time averaging, we can no longer speak of a distance restraint potential.

This way an atom can satisfy two incompatible distance restraints on average by moving between
two positions. An example would be an amino acid side-chain that is rotating around its χ dihedral
angle, thereby coming close to various other groups. Such a mobile side chain can give rise to
multiple NOEs that can not be fulfilled by a single structure.

The computation of the time averaged distance in the mdrun program is done in the following
fashion:

r−3
ij(0) = rij(0)−3

r−3
ij(t) = r−3

ij(t−∆t) exp
(
−∆t

τ

)
+ rij(t)

−3
[
1− exp

(
−∆t

τ

)] (4.91)
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When a pair is within the bounds, it can still feel a force because the time averaged distance can
still be beyond a bound. To prevent the protons from being pulled too close together, a mixed
approach can be used. In this approach, the penalty is zero when the instantaneous distance is
within the bounds, otherwise the violation is the square root of the product of the instantaneous
violation and the time averaged violation:

F i =


kadr

√
(rij − r0)(r̄ij − r0)

rij
rij

for rij < r0 and r̄ij < r0

−kadr min
(√

(rij − r1)(r̄ij − r1), r2 − r1

)
rij
rij

for rij > r1 and r̄ij > r1

0 otherwise
(4.92)

Averaging over multiple pairs

Sometimes it is unclear from experimental data which atom pair gives rise to a single NOE, in
other occasions it can be obvious that more than one pair contributes due to the symmetry of the
system, e.g. a methyl group with three protons. For such a group, it is not possible to distinguish
between the protons, therefore they should all be taken into account when calculating the distance
between this methyl group and another proton (or group of protons). Due to the physical nature of
magnetic resonance, the intensity of the NOE signal is inversely proportional to the sixth power
of the inter-atomic distance. Thus, when combining atom pairs, a fixed list of N restraints may be
taken together, where the apparent “distance” is given by:

rN (t) =

[
N∑
n=1

r̄n(t)−6

]−1/6

(4.93)

where we use rij or eqn. 4.89 for the r̄n. The rN of the instantaneous and time-averaged distances
can be combined to do a mixed restraining, as indicated above. As more pairs of protons contribute
to the same NOE signal, the intensity will increase, and the summed “distance” will be shorter than
any of its components due to the reciprocal summation.

There are two options for distributing the forces over the atom pairs. In the conservative option,
the force is defined as the derivative of the restraint potential with respect to the coordinates. This
results in a conservative potential when time averaging is not used. The force distribution over
the pairs is proportional to r−6. This means that a close pair feels a much larger force than a
distant pair, which might lead to a molecule that is “too rigid.” The other option is an equal
force distribution. In this case each pair feels 1/N of the derivative of the restraint potential with
respect to rN . The advantage of this method is that more conformations might be sampled, but the
non-conservative nature of the forces can lead to local heating of the protons.

It is also possible to use ensemble averaging using multiple (protein) molecules. In this case the
bounds should be lowered as in:

r1 = r1 ∗M−1/6

r2 = r2 ∗M−1/6 (4.94)

where M is the number of molecules. The GROMACS preprocessor grompp can do this auto-
matically when the appropriate option is given. The resulting “distance” is then used to calculate
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the scalar force according to:

F i =


0 rN < r1

kdr(rN − r1)
rij
rij

r1 ≤ rN < r2

kdr(r2 − r1)
rij
rij

rN ≥ r2

(4.95)

where i and j denote the atoms of all the pairs that contribute to the NOE signal.

Using distance restraints

A list of distance restrains based on NOE data can be added to a molecule definition in your
topology file, like in the following example:

[ distance_restraints ]
; ai aj type index type’ low up1 up2 fac
10 16 1 0 1 0.0 0.3 0.4 1.0
10 28 1 1 1 0.0 0.3 0.4 1.0
10 46 1 1 1 0.0 0.3 0.4 1.0
16 22 1 2 1 0.0 0.3 0.4 2.5
16 34 1 3 1 0.0 0.5 0.6 1.0

In this example a number of features can be found. In columns ai and aj you find the atom
numbers of the particles to be restrained. The type column should always be 1. As explained
in 4.3.5, multiple distances can contribute to a single NOE signal. In the topology this can be
set using the index column. In our example, the restraints 10-28 and 10-46 both have index 1,
therefore they are treated simultaneously. An extra requirement for treating restraints together is
that the restraints must be on successive lines, without any other intervening restraint. The type’
column will usually be 1, but can be set to 2 to obtain a distance restraint that will never be time-
and ensemble-averaged; this can be useful for restraining hydrogen bonds. The columns low,
up1, and up2 hold the values of r0, r1, and r2 from eqn. 4.86. In some cases it can be useful to
have different force constants for some restraints; this is controlled by the column fac. The force
constant in the parameter file is multiplied by the value in the column fac for each restraint.

4.3.6 Orientation restraints

This section describes how orientations between vectors, as measured in certain NMR experi-
ments, can be calculated and restrained in MD simulations. The presented refinement methodol-
ogy and a comparison of results with and without time and ensemble averaging have been pub-
lished [92].

Theory

In an NMR experiment, orientations of vectors can be measured when a molecule does not tum-
ble completely isotropically in the solvent. Two examples of such orientation measurements are
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residual dipolar couplings (between two nuclei) or chemical shift anisotropies. An observable for
a vector ri can be written as follows:

δi =
2

3
tr(SDi) (4.96)

where S is the dimensionless order tensor of the molecule. The tensor Di is given by:

Di =
ci
‖ri‖α

 3xx− 1 3xy 3xz
3xy 3yy − 1 3yz
3xz 3yz 3zz − 1

 (4.97)

with: x =
ri,x
‖ri‖

, y =
ri,y
‖ri‖

, z =
ri,z
‖ri‖

(4.98)

For a dipolar coupling ri is the vector connecting the two nuclei, α = 3 and the constant ci is
given by:

ci =
µ0

4π
γi1γ

i
2

h̄

4π
(4.99)

where γi1 and γi2 are the gyromagnetic ratios of the two nuclei.

The order tensor is symmetric and has trace zero. Using a rotation matrix T it can be transformed
into the following form:

TTST = s

 −1
2(1− η) 0 0

0 −1
2(1 + η) 0

0 0 1

 (4.100)

where −1 ≤ s ≤ 1 and 0 ≤ η ≤ 1. s is called the order parameter and η the asymmetry of
the order tensor S. When the molecule tumbles isotropically in the solvent, s is zero, and no
orientational effects can be observed because all δi are zero.

Calculating orientations in a simulation

For reasons which are explained below, the D matrices are calculated which respect to a reference
orientation of the molecule. The orientation is defined by a rotation matrix R, which is needed to
least-squares fit the current coordinates of a selected set of atoms onto a reference conformation.
The reference conformation is the starting conformation of the simulation. In case of ensemble av-
eraging, which will be treated later, the structure is taken from the first subsystem. The calculated
Dc
i matrix is given by:

Dc
i (t) = R(t)Di(t)R

T (t) (4.101)

The calculated orientation for vector i is given by:

δci (t) =
2

3
tr(S(t)Dc

i (t)) (4.102)

The order tensor S(t) is usually unknown. A reasonable choice for the order tensor is the tensor
which minimizes the (weighted) mean square difference between the calculated and the observed
orientations:

MSD(t) =

(
N∑
i=1

wi

)−1 N∑
i=1

wi(δ
c
i (t)− δ

exp
i )2 (4.103)
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To properly combine different types of measurements, the unit of wi should be such that all terms
are dimensionless. This means the unit of wi is the unit of δi to the power −2. Note that scaling
all wi with a constant factor does not influence the order tensor.

Time averaging

Since the tensors Di fluctuate rapidly in time, much faster than can be observed in an experiment,
they should be averaged over time in the simulation. However, in a simulation the time and the
number of copies of a molecule are limited. Usually one can not obtain a converged average of the
Di tensors over all orientations of the molecule. If one assumes that the average orientations of
the ri vectors within the molecule converge much faster than the tumbling time of the molecule,
the tensor can be averaged in an axis system that rotates with the molecule, as expressed by equa-
tion (4.101). The time-averaged tensors are calculated using an exponentially decaying memory
function:

Da
i (t) =

∫ t

u=t0
Dc
i (u) exp

(
− t− u

τ

)
du∫ t

u=t0
exp

(
− t− u

τ

)
du

(4.104)

Assuming that the order tensor S fluctuates slower than the Di, the time-averaged orientation can
be calculated as:

δai (t) =
2

3
tr(S(t)Da

i (t)) (4.105)

where the order tensor S(t) is calculated using expression (4.103) with δci (t) replaced by δai (t).

Restraining

The simulated structure can be restrained by applying a force proportional to the difference be-
tween the calculated and the experimental orientations. When no time averaging is applied, a
proper potential can be defined as:

V =
1

2
k

N∑
i=1

wi(δ
c
i (t)− δ

exp
i )2 (4.106)

where the unit of k is the unit of energy. Thus the effective force constant for restraint i is kwi.
The forces are given by minus the gradient of V . The force Fi working on vector ri is:

Fi(t) = −dV
dri

= −kwi(δci (t)− δ
exp
i )

dδi(t)
dri

= −kwi(δci (t)− δ
exp
i )

2ci
‖r‖2+α

(
2RTSRri −

2 + α

‖r‖2
tr(RTSRrir

T
i )ri

)
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Ensemble averaging

Ensemble averaging can be applied by simulating a system of M subsystems that each contain
an identical set of orientation restraints. The systems only interact via the orientation restraint
potential which is defined as:

V = M
1

2
k

N∑
i=1

wi〈δci (t)− δ
exp
i 〉

2 (4.107)

The force on vector ri,m in subsystem m is given by:

Fi,m(t) = − dV
dri,m

= −kwi〈δci (t)− δ
exp
i 〉

dδci,m(t)

dri,m
(4.108)

Time averaging

When using time averaging it is not possible to define a potential. We can still define a quantity
that gives a rough idea of the energy stored in the restraints:

V = M
1

2
ka

N∑
i=1

wi〈δai (t)− δexpi 〉
2 (4.109)

The force constant ka is switched on slowly to compensate for the lack of history at times close to
t0. It is exactly proportional to the amount of average that has been accumulated:

ka = k
1

τ

∫ t

u=t0
exp

(
− t− u

τ

)
du (4.110)

What really matters is the definition of the force. It is chosen to be proportional to the square root
of the product of the time-averaged and the instantaneous deviation. Using only the time-averaged
deviation induces large oscillations. The force is given by:

Fi,m(t) =


0 for a b ≤ 0

kawi
a

|a|
√
a b

dδci,m(t)

dri,m
for a b > 0

(4.111)

a = 〈δai (t)− δexpi 〉
b = 〈δci (t)− δ

exp
i 〉

Using orientation restraints

Orientation restraints can be added to a molecule definition in the topology file in the section
[ orientation_restraints ]. Here we give an example section containing five N-H
residual dipolar coupling restraints:
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[ orientation_restraints ]
; ai aj type exp. label alpha const. obs. weight
; Hz nmˆ3 Hz Hzˆ-2

31 32 1 1 3 3 6.083 -6.73 1.0
43 44 1 1 4 3 6.083 -7.87 1.0
55 56 1 1 5 3 6.083 -7.13 1.0
65 66 1 1 6 3 6.083 -2.57 1.0
73 74 1 1 7 3 6.083 -2.10 1.0

The unit of the observable is Hz, but one can choose any other unit. In columns ai and aj you
find the atom numbers of the particles to be restrained. The type column should always be 1. The
exp. column denotes the experiment number, starting at 1. For each experiment a separate order
tensor S is optimized. The label should be a unique number larger than zero for each restraint. The
alpha column contains the power α that is used in equation (4.97) to calculate the orientation.
The const. column contains the constant ci used in the same equation. The constant should
have the unit of the observable times nmα. The column obs. contains the observable, in any unit
you like. The last column contains the weights wi; the unit should be the inverse of the square of
the unit of the observable.

Some parameters for orientation restraints can be specified in the grompp.mdp file, for a study
of the effect of different force constants and averaging times and ensemble averaging see [92].

4.4 Polarization

Polarization can be treated by GROMACS by attaching shell (Drude) particles to atoms and/or
virtual sites. The energy of the shell particle is then minimized at each time step in order to remain
on the Born-Oppenheimer surface.

4.4.1 Simple polarization

This is merely a harmonic potential with equilibrium distance 0.

4.4.2 Water polarization

A special potential for water that allows anisotropic polarization of a single shell particle [43].

4.4.3 Thole polarization

Based on early work by Thole [93], Roux and coworkers have implemented potentials for molecules
like ethanol [94, 95, 96]. Within such molecules, there are intra-molecular interactions between
shell particles, however these must be screened because full Coulomb would be too strong. The
potential between two shell particles i and j is:

Vthole =
qiqj
rij

[
1−

(
1 +

r̄ij
2

)
exp−r̄ij

]
(4.112)
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Note that there is a sign error in Equation 1 of Noskov et al. [96]:

r̄ij = a
rij

(αiαj)1/6
(4.113)

where a is a magic (dimensionless) constant, usually chosen to be 2.6 [96]; αi and αj are the
polarizabilities of the respective shell particles.

4.5 Free energy interactions

This section describes the λ-dependence of the potentials used for free energy calculations (see
sec. 3.12). All common types of potentials and constraints can be interpolated smoothly from state
A (λ = 0) to state B (λ = 1) and vice versa. All bonded interactions are interpolated by linear
interpolation of the interaction parameters. Non-bonded interactions can be interpolated linearly
or via soft-core interactions.

Starting in GROMACS 4.6, λ is a vector, allowing different components of the free energy trans-
formation to be carried out at different rates. Coulomb, Lennard-Jones, bonded, and restraint terms
can all be controlled independently, as described in the .mdp options.

Harmonic potentials

The example given here is for the bond potential, which is harmonic in GROMACS. However,
these equations apply to the angle potential and the improper dihedral potential as well.

Vb =
1

2

[
(1− λ)kAb + λkBb

] [
b− (1− λ)bA0 − λbB0

]2
(4.114)

∂Vb
∂λ

=
1

2
(kBb − kAb )

[
b− (1− λ)bA0 + λbB0

]2
+

(bA0 − bB0 )
[
b− (1− λ)bA0 − λbB0

] [
(1− λ)kAb + λkBb

]
(4.115)

GROMOS-96 bonds and angles

Fourth-power bond stretching and cosine-based angle potentials are interpolated by linear interpo-
lation of the force constant and the equilibrium position. Formulas are not given here.

Proper dihedrals

For the proper dihedrals, the equations are somewhat more complicated:

Vd =
[
(1− λ)kAd + λkBd

] (
1 + cos

[
nφφ− (1− λ)φAs − λφBs

])
(4.116)

∂Vd
∂λ

= (kBd − kAd )
(
1 + cos

[
nφφ− (1− λ)φAs − λφBs

])
+

(φBs − φAs )
[
(1− λ)kAd − λkBd

]
sin
[
nφφ− (1− λ)φAs − λφBs

]
(4.117)

Note: that the multiplicity nφ can not be parameterized because the function should remain peri-
odic on the interval [0, 2π].
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Tabulated bonded interactions

For tabulated bonded interactions only the force constant can interpolated:

V = ((1− λ)kA + λkB) f (4.118)
∂V

∂λ
= (kB − kA) f (4.119)

Coulomb interaction

The Coulomb interaction between two particles of which the charge varies with λ is:

Vc =
f

εrfrij

[
(1− λ)qAi q

A
j + λ qBi q

B
j

]
(4.120)

∂Vc
∂λ

=
f

εrfrij

[
−qAi qAj + qBi q

B
j

]
(4.121)

where f = 1
4πε0

= 138.935 485 (see chapter 2).

Coulomb interaction with reaction field

The Coulomb interaction including a reaction field, between two particles of which the charge
varies with λ is:

Vc = f

[
1

rij
+ krf r

2
ij − crf

] [
(1− λ)qAi q

A
j + λ qBi q

B
j

]
(4.122)

∂Vc
∂λ

= f

[
1

rij
+ krf r

2
ij − crf

] [
−qAi qAj + qBi q

B
j

]
(4.123)

Note that the constants krf and crf are defined using the dielectric constant εrf of the medium
(see sec. 4.1.4).

Lennard-Jones interaction

For the Lennard-Jones interaction between two particles of which the atom type varies with λ we
can write:

VLJ =
(1− λ)CA12 + λCB12

r12
ij

− (1− λ)CA6 + λCB6
r6
ij

(4.124)

∂VLJ
∂λ

=
CB12 − CA12

r12
ij

− CB6 − CA6
r6
ij

(4.125)

It should be noted that it is also possible to express a pathway from state A to state B using σ and
ε (see eqn. 4.5). It may seem to make sense physically to vary the force field parameters σ and ε
rather than the derived parameters C12 and C6. However, the difference between the pathways in
parameter space is not large, and the free energy itself does not depend on the pathway, so we use
the simple formulation presented above.
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Kinetic Energy

When the mass of a particle changes, there is also a contribution of the kinetic energy to the free
energy (note that we can not write the momentum p as mv, since that would result in the sign of
∂Ek
∂λ being incorrect [97]):

Ek =
1

2

p2

(1− λ)mA + λmB
(4.126)

∂Ek
∂λ

= −1

2

p2(mB −mA)

((1− λ)mA + λmB)2
(4.127)

after taking the derivative, we can insert p = mv, such that:

∂Ek
∂λ

= −1

2
v2(mB −mA) (4.128)

Constraints

The constraints are formally part of the Hamiltonian, and therefore they give a contribution to the
free energy. In GROMACS this can be calculated using the LINCS or the SHAKE algorithm. If
we have a number of constraint equations gk:

gk = rk − dk (4.129)

where rk is the distance vector between two particles and dk is the constraint distance between
the two particles, we can write this using a λ-dependent distance as

gk = rk −
(
(1− λ)dAk + λdBk

)
(4.130)

the contribution Cλ to the Hamiltonian using Lagrange multipliers λ:

Cλ =
∑
k

λkgk (4.131)

∂Cλ
∂λ

=
∑
k

λk
(
dBk − dAk

)
(4.132)

4.5.1 Soft-core interactions

In a free-energy calculation where particles grow out of nothing, or particles disappear, using the
the simple linear interpolation of the Lennard-Jones and Coulomb potentials as described in Equa-
tions 4.125 and 4.123 may lead to poor convergence. When the particles have nearly disappeared,
or are close to appearing (at λ close to 0 or 1), the interaction energy will be weak enough for
particles to get very close to each other, leading to large fluctuations in the measured values of
∂V/∂λ (which, because of the simple linear interpolation, depends on the potentials at both the
endpoints of λ).
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Figure 4.17: Soft-core interactions at λ = 0.5, with p = 2 and CA6 = CA12 = CB6 = CB12 = 1.

To circumvent these problems, the singularities in the potentials need to be removed. This can be
done by modifying the regular Lennard-Jones and Coulomb potentials with “soft-core” potentials
that limit the energies and forces involved at λ values between 0 and 1, but not at λ = 0 or 1.

In GROMACS the soft-core potentials Vsc are shifted versions of the regular potentials, so that the
singularity in the potential and its derivatives at r = 0 is never reached:

Vsc(r) = (1− λ)V A(rA) + λV B(rB) (4.133)

rA =
(
ασ6

Aλ
p + r6

) 1
6 (4.134)

rB =
(
ασ6

B(1− λ)p + r6
) 1

6 (4.135)

where V A and V B are the normal “hard core” Van der Waals or electrostatic potentials in state A
(λ = 0) and state B (λ = 1) respectively, α is the soft-core parameter (set with sc_alpha in
the .mdp file), p is the soft-core λ power (set with sc_power), σ is the radius of the interaction,
which is (C12/C6)1/6 or an input parameter (sc_sigma) when C6 or C12 is zero.

For intermediate λ, rA and rB alter the interactions very little for r > α1/6σ and quickly switch
the soft-core interaction to an almost constant value for smaller r (Fig. 4.17). The force is:

Fsc(r) = −∂Vsc(r)
∂r

= (1− λ)FA(rA)

(
r

rA

)5

+ λFB(rB)

(
r

rB

)5

(4.136)

where FA and FB are the “hard core” forces. The contribution to the derivative of the free energy
is:

∂Vsc(r)

∂λ
= V B(rB)− V A(rA) + (1− λ)

∂V A(rA)

∂rA

∂rA
∂λ

+ λ
∂V B(rB)

∂rB

∂rB
∂λ

= V B(rB)− V A(rA) +
pα

6

[
λFB(rB)r−5

B σ6
B(1− λ)p−1 − (1− λ)FA(rA)r−5

A σ6
Aλ

p−1
]

(4.137)

The original GROMOS Lennard-Jones soft-core function [98] uses p = 2, but p = 1 gives a
smoother ∂H/∂λ curve.
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Another issue that should be considered is the soft-core effect of hydrogens without Lennard-Jones
interaction. Their soft-core σ is set with sc-sigma in the .mdp file. These hydrogens produce
peaks in ∂H/∂λ at λ is 0 and/or 1 for p = 1 and close to 0 and/or 1 with p = 2. Lowering
sc-sigma will decrease this effect, but it will also increase the interactions with hydrogens
relative to the other interactions in the soft-core state.

When soft core potentials are selected (by setting sc-alpha>0), and the Coulomb and Lennard-
Jones potentials are turned on or off sequentially, then the Coulombic interaction is turned off
linearly, rather than using soft core interactions, which should be less statistically noisy in most
cases. This behavior can be overwritten by using the mdp option sc-coul to yes. Additionally,
the soft-core interaction potential is only applied when either the A or B state has zero interac-
tion potential. If both A and B states have nonzero interaction potential, default linear scaling
described above is used. When both Coulombic and Lennard-Jones interactions are turned off
simultaneously, a soft-core potential is used, and a hydrogen is being introduced or deleted, the
sigma is set to sc-sigma-min, which itself defaults to sc-sigma-default.

Recently, a new formulation of the soft-core approach has been derived that in most cases gives
lower and more even statistical variance than the standard soft-core path described above. [99, 100]
Specifically, we have:

Vsc(r) = (1− λ)V A(rA) + λV B(rB) (4.138)

rA =
(
ασ48

A λ
p + r48

) 1
48 (4.139)

rB =
(
ασ48

B (1− λ)p + r48
) 1

48 (4.140)

This “1-1-48” path is also implemented in GROMACS. Note that for this path the soft core α
should satisfy 0.001 < α < 0.003, rather than α ≈ 0.5.

4.6 Methods

4.6.1 Exclusions and 1-4 Interactions.

Atoms within a molecule that are close by in the chain, i.e. atoms that are covalently bonded,
or linked by one or two atoms are called first neighbors, second neighbors and third neighbors,
respectively (see Fig. 4.18). Since the interactions of atom i with atoms i+1 and i+2 are mainly
quantum mechanical, they can not be modeled by a Lennard-Jones potential. Instead it is assumed
that these interactions are adequately modeled by a harmonic bond term or constraint (i, i+1) and
a harmonic angle term (i, i+2). The first and second neighbors (atoms i+1 and i+2) are therefore
excluded from the Lennard-Jones interaction list of atom i; atoms i+1 and i+2 are called exclusions
of atom i.

For third neighbors, the normal Lennard-Jones repulsion is sometimes still too strong, which
means that when applied to a molecule, the molecule would deform or break due to the internal
strain. This is especially the case for carbon-carbon interactions in a cis-conformation (e.g. cis-
butane). Therefore, for some of these interactions, the Lennard-Jones repulsion has been reduced
in the GROMOS force field, which is implemented by keeping a separate list of 1-4 and nor-
mal Lennard-Jones parameters. In other force fields, such as OPLS [101], the standard Lennard-
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i+1 i+3

i i+2 i+4

Figure 4.18: Atoms along an alkane chain.

Jones parameters are reduced by a factor of two, but in that case also the dispersion (r−6) and the
Coulomb interaction are scaled. GROMACS can use either of these methods.

4.6.2 Charge Groups

In principle, the force calculation in MD is an O(N2) problem. Therefore, we apply a cut-off for
non-bonded force (NBF) calculations; only the particles within a certain distance of each other
are interacting. This reduces the cost to O(N) (typically 100N to 200N ) of the NBF. It also
introduces an error, which is, in most cases, acceptable, except when applying the cut-off implies
the creation of charges, in which case you should consider using the lattice sum methods provided
by GROMACS.

Consider a water molecule interacting with another atom. If we would apply a plain cut-off on an
atom-atom basis we might include the atom-oxygen interaction (with a charge of −0.82) without
the compensating charge of the protons, and as a result, induce a large dipole moment over the
system. Therefore, we have to keep groups of atoms with total charge 0 together. These groups are
called charge groups. Note that with a proper treatment of long-range electrostatics (e.g. particle-
mesh Ewald (sec. 4.8.2), keeping charge groups together is not required.

4.6.3 Treatment of Cut-offs in the group scheme

GROMACS is quite flexible in treating cut-offs, which implies there can be quite a number of
parameters to set. These parameters are set in the input file for grompp. There are two sort of
parameters that affect the cut-off interactions; you can select which type of interaction to use in
each case, and which cut-offs should be used in the neighbor searching.

For both Coulomb and van der Waals interactions there are interaction type selectors (termed
vdwtype and coulombtype) and two parameters, for a total of six non-bonded interaction
parameters. See sec. 7.3 for a complete description of these parameters.

The neighbor searching (NS) can be performed using a single-range, or a twin-range approach.
Since the former is merely a special case of the latter, we will discuss the more general twin-
range. In this case, NS is described by two radii: rlist and max(rcoulomb,rvdw). Usually
one builds the neighbor list every 10 time steps or every 20 fs (parameter nstlist). In the
neighbor list, all interaction pairs that fall within rlist are stored. Furthermore, the interac-
tions between pairs that do not fall within rlist but do fall within max(rcoulomb,rvdw) are
computed during NS. The forces and energy are stored separately and added to short-range forces
at every time step between successive NS. If rlist = max(rcoulomb,rvdw), no forces are
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evaluated during neighbor list generation. The virial is calculated from the sum of the short- and
long-range forces. This means that the virial can be slightly asymmetrical at non-NS steps. When
mdrun is compiled to use mixed precision, the virial is almost always asymmetrical because the
off-diagonal elements are about as large as each element in the sum. In most cases this is not really
a problem, since the fluctuations in the virial can be 2 orders of magnitude larger than the average.

Except for the plain cut-off, all of the interaction functions in Table 4.2 require that neighbor
searching be done with a larger radius than the rc specified for the functional form, because of the
use of charge groups. The extra radius is typically of the order of 0.25 nm (roughly the largest
distance between two atoms in a charge group plus the distance a charge group can diffuse within
neighbor list updates).

Type Parameters
Coulomb Plain cut-off rc, εr

Reaction field rc, εrf
Shift function r1, rc, εr
Switch function r1, rc, εr

VdW Plain cut-off rc
Shift function r1, rc
Switch function r1, rc

Table 4.2: Parameters for the different functional forms of the non-bonded interactions.

4.7 Virtual interaction sites

Virtual interaction sites (called dummy atoms in GROMACS versions before 3.3) can be used in
GROMACS in a number of ways. We write the position of the virtual site rs as a function of the
positions of other particles ri: rs = f(r1..rn). The virtual site, which may carry charge or be
involved in other interactions, can now be used in the force calculation. The force acting on the
virtual site must be redistributed over the particles with mass in a consistent way. A good way to
do this can be found in ref. [102]. We can write the potential energy as:

V = V (rs, r1, . . . , rn) = V ∗(r1, . . . , rn) (4.141)

The force on the particle i is then:

F i = −∂V
∗

∂ri
= −∂V

∂ri
− ∂V

∂rs

∂rs
∂ri

= F direct
i + F ′i (4.142)

The first term is the normal force. The second term is the force on particle i due to the virtual site,
which can be written in tensor notation:

F ′i =



∂xs
∂xi

∂ys
∂xi

∂zs
∂xi

∂xs
∂yi

∂ys
∂yi

∂zs
∂yi

∂xs
∂zi

∂ys
∂zi

∂zs
∂zi

F s (4.143)
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Figure 4.19: The six different types of virtual site construction in GROMACS. The constructing
atoms are shown as black circles, the virtual sites in gray.

where F s is the force on the virtual site and xs, ys and zs are the coordinates of the virtual site. In
this way, the total force and the total torque are conserved [102].

The computation of the virial (eqn. 3.24) is non-trivial when virtual sites are used. Since the virial
involves a summation over all the atoms (rather than virtual sites), the forces must be redistributed
from the virtual sites to the atoms (using eqn. 4.143) before computation of the virial. In some
special cases where the forces on the atoms can be written as a linear combination of the forces on
the virtual sites (types 2 and 3 below) there is no difference between computing the virial before
and after the redistribution of forces. However, in the general case redistribution should be done
first.

There are six ways to construct virtual sites from surrounding atoms in GROMACS, which we
classify by the number of constructing atoms. Note that all site types mentioned can be constructed
from types 3fd (normalized, in-plane) and 3out (non-normalized, out of plane). However, the
amount of computation involved increases sharply along this list, so we strongly recommended
using the first adequate virtual site type that will be sufficient for a certain purpose. Fig. 4.19
depicts 6 of the available virtual site constructions. The conceptually simplest construction types
are linear combinations:

rs =
N∑
i=1

wi ri (4.144)

The force is then redistributed using the same weights:

F ′i = wi F s (4.145)

The types of virtual sites supported in GROMACS are given in the list below. Constructing atoms
in virtual sites can be virtual sites themselves, but only if they are higher in the list, i.e. virtual
sites can be constructed from “particles” that are simpler virtual sites.

2. As a linear combination of two atoms (Fig. 4.19 2):

wi = 1− a , wj = a (4.146)

In this case the virtual site is on the line through atoms i and j.

3. As a linear combination of three atoms (Fig. 4.19 3):

wi = 1− a− b , wj = a , wk = b (4.147)

In this case the virtual site is in the plane of the other three particles.
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3fd. In the plane of three atoms, with a fixed distance (Fig. 4.19 3fd):

rs = ri + b
rij + arjk
|rij + arjk|

(4.148)

In this case the virtual site is in the plane of the other three particles at a distance of |b| from
i. The force on particles i, j and k due to the force on the virtual site can be computed as:

F ′i = F s − γ(F s − p)

F ′j = (1− a)γ(F s − p)

F ′k = aγ(F s − p)

where
γ =

b

|rij + arjk|

p =
ris · F s

ris · ris
ris

(4.149)

3fad. In the plane of three atoms, with a fixed angle and distance (Fig. 4.19 3fad):

rs = ri + d cos θ
rij
|rij |

+ d sin θ
r⊥
|r⊥|

where r⊥ = rjk −
rij · rjk
rij · rij

rij (4.150)

In this case the virtual site is in the plane of the other three particles at a distance of |d| from
i at an angle of α with rij . Atom k defines the plane and the direction of the angle. Note
that in this case b and α must be specified, instead of a and b (see also sec. 5.2.2). The force
on particles i, j and k due to the force on the virtual site can be computed as (with r⊥ as
defined in eqn. 4.150):

F ′i = F s −
d cos θ

|rij |
F 1 +

d sin θ

|r⊥|

(
rij · rjk
rij · rij

F 2 + F 3

)

F ′j =
d cos θ

|rij |
F 1 − d sin θ

|r⊥|

(
F 2 +

rij · rjk
rij · rij

F 2 + F 3

)

F ′k =
d sin θ

|r⊥|
F 2

where F 1 = F s −
rij · F s

rij · rij
rij , F 2 = F 1 −

r⊥ · F s

r⊥ · r⊥
r⊥ and F 3 =

rij · F s

rij · rij
r⊥

(4.151)

3out. As a non-linear combination of three atoms, out of plane (Fig. 4.19 3out):

rs = ri + arij + brik + c(rij × rik) (4.152)

This enables the construction of virtual sites out of the plane of the other atoms. The force
on particles i, j and k due to the force on the virtual site can be computed as:

F ′j =

 a −c zik c yik

c zik a −c xik
−c yik c xik a

F s

F ′k =

 b c zij −c yij
−c zij b c xij

c yij −c xij b

F s

F ′i = F s − F ′j − F ′k

(4.153)
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Figure 4.20: The new 4fdn virtual site construction, which is stable even when all constructing
atoms are in the same plane.

4fdn. From four atoms, with a fixed distance, see separate Fig. 4.20. This construction is a bit
complex, in particular since the previous type (4fd) could be unstable which forced us to
introduce a more elaborate construction:

rja = a rik − rij = a (xk − xi)− (xj − xi)

rjb = b ril − rij = b (xl − xi)− (xj − xi)

rm = rja × rjb

xs = xi + c
rm
|rm|

(4.154)

In this case the virtual site is at a distance of |c| from i, while a and b are parameters. Note
that the vectors rik and rij are not normalized to save floating-point operations. The force
on particles i, j, k and l due to the force on the virtual site are computed through chain rule
derivatives of the construction expression. This is exact and conserves energy, but it does
lead to relatively lengthy expressions that we do not include here (over 200 floating-point
operations). The interested reader can look at the source code in vsite.c. Fortunately,
this vsite type is normally only used for chiral centers such as Cα atoms in proteins.

The new 4fdn construct is identified with a ‘type’ value of 2 in the topology. The earlier
4fd type is still supported internally (‘type’ value 1), but it should not be used for new
simulations. All current GROMACS tools will automatically generate type 4fdn instead.

N. A linear combination of N atoms with relative weights ai. The weight for atom i is:

wi = ai

 N∑
j=1

aj

−1

(4.155)

There are three options for setting the weights:

COG center of geometry: equal weights
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COM center of mass: ai is the mass of atom i; when in free-energy simulations the mass of
the atom is changed, only the mass of the A-state is used for the weight

COW center of weights: ai is defined by the user

4.8 Long Range Electrostatics

4.8.1 Ewald summation

The total electrostatic energy of N particles and their periodic images is given by

V =
f

2

∑
nx

∑
ny

∑
nz∗

N∑
i

N∑
j

qiqj
rij,n

. (4.156)

(nx, ny, nz) = n is the box index vector, and the star indicates that terms with i = j should be
omitted when (nx, ny, nz) = (0, 0, 0). The distance rij,n is the real distance between the charges
and not the minimum-image. This sum is conditionally convergent, but very slow.

Ewald summation was first introduced as a method to calculate long-range interactions of the peri-
odic images in crystals [103]. The idea is to convert the single slowly-converging sum eqn. 4.156
into two quickly-converging terms and a constant term:

V = Vdir + Vrec + V0 (4.157)

Vdir =
f

2

N∑
i,j

∑
nx

∑
ny

∑
nz∗

qiqj
erfc(βrij,n)

rij,n
(4.158)

Vrec =
f

2πV

N∑
i,j

qiqj
∑
mx

∑
my

∑
mz∗

exp
(
−(πm/β)2 + 2πim · (ri − rj)

)
m2

(4.159)

V0 = − fβ√
π

N∑
i

q2
i , (4.160)

where β is a parameter that determines the relative weight of the direct and reciprocal sums and
m = (mx,my,mz). In this way we can use a short cut-off (of the order of 1 nm) in the direct
space sum and a short cut-off in the reciprocal space sum (e.g. 10 wave vectors in each direction).
Unfortunately, the computational cost of the reciprocal part of the sum increases as N2 (or N3/2

with a slightly better algorithm) and it is therefore not realistic for use in large systems.

Using Ewald

Don’t use Ewald unless you are absolutely sure this is what you want - for almost all cases the PME
method below will perform much better. If you still want to employ classical Ewald summation
enter this in your .mdp file, if the side of your box is about 3 nm:

coulombtype = Ewald
rvdw = 0.9
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rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.6
ewald-rtol = 1e-5

The ratio of the box dimensions and the fourierspacing parameter determines the highest
magnitude of wave vectors mx,my,mz to use in each direction. With a 3-nm cubic box this ex-
ample would use 11 wave vectors (from −5 to 5) in each direction. The ewald-rtol parameter
is the relative strength of the electrostatic interaction at the cut-off. Decreasing this gives you a
more accurate direct sum, but a less accurate reciprocal sum.

4.8.2 PME

Particle-mesh Ewald is a method proposed by Tom Darden [12] to improve the performance of
the reciprocal sum. Instead of directly summing wave vectors, the charges are assigned to a grid
using interpolation. The implementation in GROMACS uses cardinal B-spline interpolation [13],
which is referred to as smooth PME (SPME). The grid is then Fourier transformed with a 3D FFT
algorithm and the reciprocal energy term obtained by a single sum over the grid in k-space.

The potential at the grid points is calculated by inverse transformation, and by using the interpo-
lation factors we get the forces on each atom.

The PME algorithm scales as N log(N), and is substantially faster than ordinary Ewald summa-
tion on medium to large systems. On very small systems it might still be better to use Ewald
to avoid the overhead in setting up grids and transforms. For the parallelization of PME see the
section on MPMD PME (3.17.5).

With the Verlet cut-off scheme, the PME direct space potential is shifted by a constant such that
the potential is zero at the cut-off. This shift is small and since the net system charge is close to
zero, the total shift is very small, unlike in the case of the Lennard-Jones potential where all shifts
add up. We apply the shift anyhow, such that the potential is the exact integral of the force.

Using PME

As an example for using Particle-mesh Ewald summation in GROMACS, specify the following
lines in your .mdp file:

coulombtype = PME
rvdw = 0.9
rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.12
pme-order = 4
ewald-rtol = 1e-5

In this case the fourierspacing parameter determines the maximum spacing for the FFT grid
(i.e. minimum number of grid points), and pme-order controls the interpolation order. Using
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fourth-order (cubic) interpolation and this spacing should give electrostatic energies accurate to
about 5 · 10−3. Since the Lennard-Jones energies are not this accurate it might even be possible to
increase this spacing slightly.

Pressure scaling works with PME, but be aware of the fact that anisotropic scaling can introduce
artificial ordering in some systems.

4.8.3 P3M-AD

The Particle-Particle Particle-Mesh methods of Hockney & Eastwood can also be applied in GRO-
MACS for the treatment of long range electrostatic interactions [104]. Although the P3M method
was the first efficient long-range electrostatics method for molecular simulation, the smooth PME
(SPME) method has largely replaced P3M as the method of choice in atomistic simulations. One
performance disadvantage of the original P3M method was that it required 3 3D-FFT back trans-
forms to obtain the forces on the particles. But this is not required for P3M and the forces can be
derived through analytical differentiation of the potential, as done in PME. The resulting method is
termed P3M-AD. The only remaining difference between P3M-AD and PME is the optimization
of the lattice Green influence function for error minimization that P3M uses. However, in 2012
it has been shown that the SPME influence function can be modified to obtain P3M [105]. This
means that the advantage of error minimization in P3M-AD can be used at the same computational
cost and with the same code as PME, just by adding a few lines to modify the influence function.
However, at optimal parameter setting the effect of error minimization in P3M-AD is less than
10%. P3M-AD does show large accuracy gains with interlaced (also known as staggered) grids,
but that is not supported in GROMACS (yet).

P3M is used in GROMACS with exactly the same options as used with PME by selecting the
electrostatics type:

coulombtype = P3M-AD

4.8.4 Optimizing Fourier transforms and PME calculations

It is recommended to optimize the parameters for calculation of electrostatic interaction such as
PME grid dimensions and cut-off radii. This is particularly relevant to do before launching long
production runs.

GROMACS includes a special tool, g_tune_pme, which automates the process of selecting the
optimal size of the grid and number of PME-only notes.

4.9 Long Range Van der Waals interactions

4.9.1 Dispersion correction

In this section, we derive long-range corrections due to the use of a cut-off for Lennard-Jones
or Buckingham interactions. We assume that the cut-off is so long that the repulsion term can
safely be neglected, and therefore only the dispersion term is taken into account. Due to the
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nature of the dispersion interaction (we are truncating a potential proportional to −r−6), energy
and pressure corrections are both negative. While the energy correction is usually small, it may be
important for free energy calculations where differences between two different Hamiltonians are
considered. In contrast, the pressure correction is very large and can not be neglected under any
circumstances where a correct pressure is required, especially for any NPT simulations. Although
it is, in principle, possible to parameterize a force field such that the pressure is close to the desired
experimental value without correction, such a method makes the parameterization dependent on
the cut-off and is therefore undesirable.

Energy

The long-range contribution of the dispersion interaction to the virial can be derived analytically, if
we assume a homogeneous system beyond the cut-off distance rc. The dispersion energy between
two particles is written as:

V (rij) = −C6 r
−6
ij (4.161)

and the corresponding force is:
F ij = −6C6 r

−8
ij rij (4.162)

In a periodic system it is not easy to calculate the full potentials, so usually a cut-off is applied,
which can be abrupt or smooth. We will call the potential and force with cut-off Vc and F c. The
long-range contribution to the dispersion energy in a system with N particles and particle density
ρ = N/V is:

Vlr =
1

2
Nρ

∫ ∞
0

4πr2g(r) (V (r)− Vc(r)) dr (4.163)

We will integrate this for the shift function, which is the most general form of van der Waals
interaction available in GROMACS. The shift function has a constant difference S from 0 to r1

and is 0 beyond the cut-off distance rc. We can integrate eqn. 4.163, assuming that the density
in the sphere within r1 is equal to the global density and the radial distribution function g(r) is 1
beyond r1:

Vlr =
1

2
N

(
ρ

∫ r1

0
4πr2g(r)C6 S dr + ρ

∫ rc

r1
4πr2 (V (r)− Vc(r)) dr + ρ

∫ ∞
rc

4πr2V (r) dr

)
=

1

2
N

((
4

3
πρr3

1 − 1

)
C6 S + ρ

∫ rc

r1
4πr2 (V (r)− Vc(r)) dr − 4

3
πNρC6 r

−3
c

)
(4.164)

where the term −1 corrects for the self-interaction. For a plain cut-off we only need to assume
that g(r) is 1 beyond rc and the correction reduces to [106]:

Vlr = −2

3
πNρC6 r

−3
c (4.165)

If we consider, for example, a box of pure water, simulated with a cut-off of 0.9 nm and a density
of 1 g cm−3 this correction is −0.75 kJ mol−1 per molecule.

For a homogeneous mixture we need to define an average dispersion constant:

〈C6〉 =
2

N(N − 1)

N∑
i

N∑
j>i

C6(i, j) (4.166)
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In GROMACS, excluded pairs of atoms do not contribute to the average.

In the case of inhomogeneous simulation systems, e.g. a system with a lipid interface, the energy
correction can be applied if 〈C6〉 for both components is comparable.

Virial and pressure

The scalar virial of the system due to the dispersion interaction between two particles i and j is
given by:

Ξ = −1

2
rij · F ij = 3C6 r

−6
ij (4.167)

The pressure is given by:

P =
2

3V
(Ekin − Ξ) (4.168)

The long-range correction to the virial is given by:

Ξlr =
1

2
Nρ

∫ ∞
0

4πr2g(r)(Ξ− Ξc) dr (4.169)

We can again integrate the long-range contribution to the virial assuming g(r) is 1 beyond r1:

Ξlr =
1

2
Nρ

(∫ rc

r1
4πr2(Ξ− Ξc) dr +

∫ ∞
rc

4πr23C6 r
−6
ij dr

)
=

1

2
Nρ

(∫ rc

r1
4πr2(Ξ− Ξc) dr + 4πC6 r

−3
c

)
(4.170)

For a plain cut-off the correction to the pressure is [106]:

Plr = −4

3
πC6 ρ

2r−3
c (4.171)

Using the same example of a water box, the correction to the virial is 0.75 kJ mol−1 per molecule,
the corresponding correction to the pressure for SPC water is approximately −280 bar.

For homogeneous mixtures, we can again use the average dispersion constant 〈C6〉 (eqn. 4.166):

Plr = −4

3
π 〈C6〉 ρ2r−3

c (4.172)

For inhomogeneous systems, eqn. 4.172 can be applied under the same restriction as holds for the
energy (see sec. 4.9.1).

4.9.2 Lennard-Jones PME

In order to treat systems, using Lennard-Jones potentials, that are non-homogeneous outside of the
cut-off distance, we can instead use the Particle-mesh Ewald method as discussed for electrostatics
above. In this case the modified Ewald equations become

V = Vdir + Vrec + V0 (4.173)
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Vdir = −1

2

N∑
i,j

∑
nx

∑
ny

∑
nz∗

Cij6 g(βrij,n)

rij,n6
(4.174)

Vrec =
π

3
2β3

2V

∑
mx

∑
my

∑
mz∗

f(π|m|/β)×
N∑
i,j

Cij6 exp [−2πim · (ri − rj)] (4.175)

V0 = −β
6

12

N∑
i

Cii6 (4.176)

where m = (mx,my,mz), β is the parameter determining the weight between direct and recipro-
cal space, and Cij6 is the combined dispersion parameter for particle i and j. The star indicates that
terms with i = j should be omitted when ((nx, ny, nz) = (0, 0, 0)), and rij,n is the real distance
between the particles. Following the derivation by Essmann [13], the functions f and g introduced
above are defined as

f(x) = 1/3
[
(1− 2x2)exp(−x2) + 2x3√π erfc(x)

]
(4.177)

g(x) = exp(−x2)(1 + x2 +
x4

2
). (4.178)

The above methodology works fine as long as the dispersion parameters can be combined geomet-
rically (eqn. 4.6) in the same way as the charges for electrostatics

Cij6,geom =
(
Cii6 C

jj
6

)1/2
(4.179)

For Lorentz-Berthelot combination rules (eqn. 4.7), the reciprocal part of this sum has to be cal-
culated seven times due to the splitting of the dispersion parameter according to

Cij6,L−B = (σi + σj)
6 =

6∑
n=0

Pnσ
n
i σ

(6−n)
j , (4.180)

for Pn the Pascal triangle coefficients. This introduces a non-negligible cost to the reciprocal part,
requiring seven separate FFTs, and therefore this has been the limiting factor in previous attempts
to implement LJ-PME. A solution to this problem is to use geometrical combination rules in order
to calculate an approximate interaction parameter for the reciprocal part of the potential, yielding
a total interaction of

V (r < rc) = Cdir
6 g(βr)r−6︸ ︷︷ ︸
Direct space

+Crecip
6,geom[1− g(βr)]r−6︸ ︷︷ ︸

Reciprocal space

= Crecip
6,geomr

−6 +
(
Cdir

6 − C
recip
6,geom

)
g(βr)r−6 (4.181)

V (r > rc) = Crecip
6,geom[1− g(βr)]r−6︸ ︷︷ ︸

Reciprocal space

. (4.182)

This will preserve a well-defined Hamiltonian and significantly increase the performance of the
simulations. The approximation does introduce some errors, but since the difference is located in
the interactions calculated in reciprocal space, the effect will be very small compared to the total
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interaction energy. In a simulation of a lipid bilayer, using a cut-off of 1.0 nm, the relative error
in total dispersion energy was below 0.5%. A more thorough discussion of this can be found in
[107].

In GROMACS we now perform the proper calculation of this interaction by subtracting, from the
direct-space interactions, the contribution made by the approximate potential that is used in the
reciprocal part

Vdir = Cdir
6 r−6 − Crecip

6 [1− g(βr)]r−6. (4.183)

This potential will reduce to the expression in eqn. 4.174 when Cdir
6 = Crecip

6 , and the total
interaction is given by

V (r < rc) = Cdir
6 r−6 − Crecip

6 [1− g(βr)]r−6︸ ︷︷ ︸
Direct space

+Crecip
6 [1− g(βr)]r−6︸ ︷︷ ︸

Reciprocal space

= Cdir
6 r−6 (4.184)

V (r > rc) = Crecip
6 [1− g(βr)]r−6. (4.185)

For the case when Cdir
6 6= Crecip

6 this will retain an unmodified LJ force up to the cut-off, and
the error is an order of magnitude smaller than in simulations where the direct-space interactions
do not account for the approximation used in reciprocal space. When using a VdW interaction
modifier of potential-shift, the constant(

−Cdir
6 + Crecip

6 [1− g(βrc)]
)
r−6
c (4.186)

is added to eqn. 4.184 in order to ensure that the potential is continuous at the cutoff. Note
that, in the same way as eqn. 4.183, this degenerates into the expected −C6g(βrc)r

−6
c when

Cdir
6 = Crecip

6 . In addition to this, a long-range dispersion correction can be applied to correct for
the approximation using a combination rule in reciprocal space. This correction assumes, as for
the cut-off LJ potential, a uniform particle distribution. But since the error of the combination rule
approximation is very small this long-range correction is not necessary in most cases. Also note
that this homogenous correction does not correct the surface tension, which is an inhomogeneous
property.

Using LJ-PME

As an example for using Particle-mesh Ewald summation for Lennard-Jones interactions in GRO-
MACS, specify the following lines in your .mdp file:

vdwtype = PME
rvdw = 0.9
vdw-modifier = Potential-Shift
rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.12
pme-order = 4
ewald-rtol-lj = 0.001
lj-pme-comb-rule = geometric
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The same Fourier grid and interpolation order are used if both LJ-PME and electrostatic PME are
active, so the settings for fourierspacing and pme-order are common to both. ewald-rtol-lj
controls the splitting between direct and reciprocal space in the same way as ewald-rtol. In ad-
dition to this, the combination rule to be used in reciprocal space is determined by lj-pme-comb-rule.
If the current force field uses Lorentz-Berthelot combination rules, it is possible to set lj-pme-comb-rule
= geometric in order to gain a significant increase in performance for a small loss in accuracy.
The details of this approximation can be found in the section above.

Note that the use of a complete long-range dispersion correction means that as with Coulomb
PME, rvdw is now a free parameter in the method, rather than being necessarily restricted by the
force-field parameterization scheme. Thus it is now possible to optimize the cutoff, spacing, order
and tolerance terms for accuracy and best performance.

Naturally, the use of LJ-PME rather than LJ cut-off adds computation and communication done
for the reciprocal-space part, so for best performance in balancing the load of parallel simulations
using PME-only ranks, more such ranks should be used. It may be possible to improve upon the
automatic load-balancing used by mdrun.

4.10 Force field

A force field is built up from two distinct components:

• The set of equations (called the s) used to generate the potential energies and their deriva-
tives, the forces. These are described in detail in the previous chapter.

• The parameters used in this set of equations. These are not given in this manual, but in the
data files corresponding to your GROMACS distribution.

Within one set of equations various sets of parameters can be used. Care must be taken that the
combination of equations and parameters form a consistent set. It is in general dangerous to make
ad hoc changes in a subset of parameters, because the various contributions to the total force are
usually interdependent. This means in principle that every change should be documented, verified
by comparison to experimental data and published in a peer-reviewed journal before it can be used.

GROMACS 5.0 includes several force fields, and additional ones are available on the website. If
you do not know which one to select we recommend GROMOS-96 for united-atom setups and
OPLS-AA/L for all-atom parameters. That said, we describe the available options in some detail.

All-hydrogen force field

The GROMOS-87-based all-hydrogen force field is almost identical to the normal GROMOS-87
force field, since the extra hydrogens have no Lennard-Jones interaction and zero charge. The
only differences are in the bond angle and improper dihedral angle terms. This force field is only
useful when you need the exact hydrogen positions, for instance for distance restraints derived
from NMR measurements. When citing this force field please read the previous paragraph.
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4.10.1 GROMOS-96

GROMACS supports the GROMOS-96 force fields [78]. All parameters for the 43A1, 43A2
(development, improved alkane dihedrals), 45A3, 53A5, and 53A6 parameter sets are included.
All standard building blocks are included and topologies can be built automatically by pdb2gmx.

The GROMOS-96 force field is a further development of the GROMOS-87 force field. It has
improvements over the GROMOS-87 force field for proteins and small molecules. Note that
the sugar parameters present in 53A6 do correspond to those published in 2004[108], which are
different from those present in 45A4, which is not included in GROMACS at this time. The 45A4
parameter set corresponds to a later revision of these parameters. The GROMOS-96 force field is
not, however, recommended for use with long alkanes and lipids. The GROMOS-96 force field
differs from the GROMOS-87 force field in a few respects:

• the force field parameters

• the parameters for the bonded interactions are not linked to atom types

• a fourth power bond stretching potential (4.2.1)

• an angle potential based on the cosine of the angle (4.2.6)

There are two differences in implementation between GROMACS and GROMOS-96 which can
lead to slightly different results when simulating the same system with both packages:

• in GROMOS-96 neighbor searching for solvents is performed on the first atom of the solvent
molecule. This is not implemented in GROMACS, but the difference with searching by
centers of charge groups is very small

• the virial in GROMOS-96 is molecule-based. This is not implemented in GROMACS,
which uses atomic virials

The GROMOS-96 force field was parameterized with a Lennard-Jones cut-off of 1.4 nm, so be
sure to use a Lennard-Jones cut-off (rvdw) of at least 1.4. A larger cut-off is possible because the
Lennard-Jones potential and forces are almost zero beyond 1.4 nm.

GROMOS-96 files

GROMACS can read and write GROMOS-96 coordinate and trajectory files. These files should
have the extension .g96. Such a file can be a GROMOS-96 initial/final configuration file, a
coordinate trajectory file, or a combination of both. The file is fixed format; all floats are written
as 15.9, and as such, files can get huge. GROMACS supports the following data blocks in the
given order:

• Header block:

TITLE (mandatory)
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• Frame blocks:

TIMESTEP (optional)
POSITION/POSITIONRED (mandatory)
VELOCITY/VELOCITYRED (optional)
BOX (optional)

See the GROMOS-96 manual [78] for a complete description of the blocks. Note that all GRO-
MACS programs can read compressed (.Z) or gzipped (.gz) files.

4.10.2 OPLS/AA

4.10.3 AMBER

GROMACS provides native support for the following AMBER force fields:

• AMBER94 [109]

• AMBER96 [110]

• AMBER99 [111]

• AMBER99SB [112]

• AMBER99SB-ILDN [113]

• AMBER03 [114]

• AMBERGS [115]

4.10.4 CHARMM

GROMACS supports the CHARMM force field for proteins [116, 117], lipids [118] and nucleic
acids [119, 120]. The protein parameters (and to some extent the lipid and nucleic acid parameters)
were thoroughly tested – both by comparing potential energies between the port and the standard
parameter set in the CHARMM molecular simulation package, as well by how the protein force
field behaves together with GROMACS-specific techniques such as virtual sites (enabling long
time steps) and a fast implicit solvent recently implemented [73] – and the details and results are
presented in the paper by Bjelkmar et al. [121]. The nucleic acid parameters, as well as the ones
for HEME, were converted and tested by Michel Cuendet.

When selecting the CHARMM force field in pdb2gmx the default option is to use CMAP (for
torsional correction map). To exclude CMAP, use -nocmap. The basic form of the CMAP term
implemented in GROMACS is a function of the φ and ψ backbone torsion angles. This term is
defined in the .rtp file by a [ cmap ] statement at the end of each residue supporting CMAP.
The following five atom names define the two torsional angles. Atoms 1-4 define φ, and atoms
2-5 define ψ. The corresponding atom types are then matched to the correct CMAP type in the
cmap.itp file that contains the correction maps.
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A port of the CHARMM36 force field for use with GROMACS is also available at http://
mackerell.umaryland.edu/charmm_ff.shtml#gromacs.

4.10.5 Coarse-grained force fields

Coarse-graining is a systematic way of reducing the number of degrees of freedom representing
a system of interest. To achieve this, typically whole groups of atoms are represented by single
beads and the coarse-grained force fields describes their effective interactions. Depending on the
choice of parameterization, the functional form of such an interaction can be complicated and
often tabulated potentials are used.

Coarse-grained models are designed to reproduce certain properties of a reference system. This
can be either a full atomistic model or even experimental data. Depending on the properties to
reproduce there are different methods to derive such force fields. An incomplete list of methods is
given below:

• Conserving free energies

– Simplex method
– MARTINI force field (see next section)

• Conserving distributions (like the radial distribution function), so-called structure-based
coarse-graining

– (iterative) Boltzmann inversion
– Inverse Monte Carlo

• Conversing forces

– Force matching

Note that coarse-grained potentials are state dependent (e.g. temperature, density,...) and should
be re-parametrized depending on the system of interest and the simulation conditions. This can
for example be done using the Versatile Object-oriented Toolkit for Coarse-Graining Applications
(VOTCA) [122]. The package was designed to assists in systematic coarse-graining, provides
implementations for most of the algorithms mentioned above and has a well tested interface to
GROMACS. It is available as open source and further information can be found at www.votca.org.

4.10.6 MARTINI

The MARTINI force field is a coarse-grain parameter set that allows for the construction of many
systems, including proteins and membranes.

4.10.7 PLUM

The PLUM force field [123] is an example of a solvent-free protein-membrane model for which
the membrane was derived from structure-based coarse-graining [124]. A GROMACS implemen-
tation can be found at code.google.com/p/plumx.

http://mackerell.umaryland.edu/charmm_ff.shtml#gromacs
http://mackerell.umaryland.edu/charmm_ff.shtml#gromacs
http://www.votca.org
http://code.google.com/p/plumx/
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Chapter 5

Topologies

5.1 Introduction

GROMACS must know on which atoms and combinations of atoms the various contributions to
the potential functions (see chapter 4) must act. It must also know what parameters must be
applied to the various functions. All this is described in the topology file *.top, which lists the
constant attributes of each atom. There are many more atom types than elements, but only atom
types present in biological systems are parameterized in the force field, plus some metals, ions and
silicon. The bonded and special interactions are determined by fixed lists that are included in the
topology file. Certain non-bonded interactions must be excluded (first and second neighbors), as
these are already treated in bonded interactions. In addition, there are dynamic attributes of atoms
- their positions, velocities and forces. These do not strictly belong to the molecular topology,
and are stored in the coordinate file *.gro (positions and velocities), or trajectory file *.trr
(positions, velocities, forces).

This chapter describes the setup of the topology file, the *.top file and the database files: what
the parameters stand for and how/where to change them if needed. First, all file formats are
explained. Section 5.8.1 describes the organization of the files in each force field.

Note: if you construct your own topologies, we encourage you to upload them to our topology
archive at www.gromacs.org! Just imagine how thankful you’d have been if your topology had
been available there before you started. The same goes for new force fields or modified versions
of the standard force fields - contribute them to the force field archive!

5.2 Particle type

In GROMACS, there are three types of particles, see Table 5.1. Only regular atoms and virtual
interaction sites are used in GROMACS; shells are necessary for polarizable models like the Shell-
Water models [43].

http://www.gromacs.org
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Particle Symbol
atoms A
shells S
virtual interaction sites V (or D)

Table 5.1: Particle types in GROMACS

5.2.1 Atom types

Each force field defines a set of atom types, which have a characteristic name or number, and mass
(in a.m.u.). These listings are found in the atomtypes.atp file (.atp = atom type parameter
file). Therefore, it is in this file that you can begin to change and/or add an atom type. A sample
from the gromos43a1.ff force field is listed below.

O 15.99940 ; carbonyl oxygen (C=O)
OM 15.99940 ; carboxyl oxygen (CO-)
OA 15.99940 ; hydroxyl, sugar or ester oxygen
OW 15.99940 ; water oxygen
N 14.00670 ; peptide nitrogen (N or NH)
NT 14.00670 ; terminal nitrogen (NH2)
NL 14.00670 ; terminal nitrogen (NH3)
NR 14.00670 ; aromatic nitrogen
NZ 14.00670 ; Arg NH (NH2)
NE 14.00670 ; Arg NE (NH)
C 12.01100 ; bare carbon

CH1 13.01900 ; aliphatic or sugar CH-group
CH2 14.02700 ; aliphatic or sugar CH2-group
CH3 15.03500 ; aliphatic CH3-group

Note: GROMACS makes use of the atom types as a name, not as a number (as e.g. in GROMOS).

5.2.2 Virtual sites

Some force fields use virtual interaction sites (interaction sites that are constructed from other
particle positions) on which certain interactions are located (e.g. on benzene rings, to reproduce
the correct quadrupole). This is described in sec. 4.7.

To make virtual sites in your system, you should include a section [ virtual_sites? ] (for
backward compatibility the old name [ dummies? ] can also be used) in your topology file,
where the ‘?’ stands for the number constructing particles for the virtual site. This will be ‘2’ for
type 2, ‘3’ for types 3, 3fd, 3fad and 3out and ‘4’ for type 4fdn. The last of these replace an older
4fd type (with the ‘type’ value 1) that could occasionally be unstable; while it is still supported
internally in the code, the old 4fd type should not be used in new input files. The different types
are explained in sec. 4.7.

Parameters for type 2 should look like this:

[ virtual_sites2 ]
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; Site from funct a
5 1 2 1 0.7439756

for type 3 like this:

[ virtual_sites3 ]
; Site from funct a b
5 1 2 3 1 0.7439756 0.128012

for type 3fd like this:

[ virtual_sites3 ]
; Site from funct a d
5 1 2 3 2 0.5 -0.105

for type 3fad like this:

[ virtual_sites3 ]
; Site from funct theta d
5 1 2 3 3 120 0.5

for type 3out like this:

[ virtual_sites3 ]
; Site from funct a b c
5 1 2 3 4 -0.4 -0.4 6.9281

for type 4fdn like this:

[ virtual_sites4 ]
; Site from funct a b c
5 1 2 3 4 2 1.0 0.9 0.105

This will result in the construction of a virtual site, number 5 (first column ‘Site’), based on the
positions of the atoms whose indices are 1 and 2 or 1, 2 and 3 or 1, 2, 3 and 4 (next two, three
or four columns ‘from’) following the rules determined by the function number (next column
‘funct’) with the parameters specified (last one, two or three columns ‘a b . .’). Obviously,
the atom numbers (including virtual site number) depend on the molecule. It may be instructive
to study the topologies for TIP4P or TIP5P water models that are included with the GROMACS
distribution.

Note that if any constant bonded interactions are defined between virtual sites and/or normal
atoms, they will be removed by grompp (unless the option tt -normvsbds is used). This re-
moval of bonded interactions is done after generating exclusions, as the generation of exclusions
is based on “chemically” bonded interactions.

Virtual sites can be constructed in a more generic way using basic geometric parameters. The di-
rective that can be used is [ virtual_sitesn ]. Required parameters are listed in Table 5.5.
An example entry for defining a virtual site at the center of geometry of a given set of atoms might
be:

[ virtual_sitesn ]
; Site funct from
5 1 1 2 3 4
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Property Symbol Unit
Type - -
Mass m a.m.u.
Charge q electron
epsilon ε kJ/mol
sigma σ nm

Table 5.2: Static atom type properties in GROMACS

5.3 Parameter files

5.3.1 Atoms

The static properties (see Table 5.2 assigned to the atom types are assigned based on data in several
places. The mass is listed in atomtypes.atp (see 5.2.1), whereas the charge is listed in *.rtp
(.rtp = residue topology parameter file, see 5.6.1). This implies that the charges are only defined
in the building blocks of amino acids, nucleic acids or otherwise, as defined by the user. When
generating a topology (*.top) using the pdb2gmx program, the information from these files is
combined.

5.3.2 Non-bonded parameters

The non-bonded parameters consist of the van der Waals parameters V (c6 or σ, depending on the
combination rule) and W (c12 or ε), as listed in the file ffnonbonded.itp, where ptype is
the particle type (see Table 5.1). As with the bonded parameters, entries in [ *type ] directives
are applied to their counterparts in the topology file. Missing parameters generate warnings, except
as noted below in section 5.3.4.

[ atomtypes ]
;name at.num mass charge ptype V(c6) W(c12)

O 8 15.99940 0.000 A 0.22617E-02 0.74158E-06
OM 8 15.99940 0.000 A 0.22617E-02 0.74158E-06
.....

[ nonbond_params ]
; i j func V(c6) W(c12)

O O 1 0.22617E-02 0.74158E-06
O OA 1 0.22617E-02 0.13807E-05
.....

Note that most of the included force fields also include the at.num. column, but this same in-
formation is implied in the OPLS-AA bond_type column. The interpretation of the parameters
V and W depends on the combination rule that was chosen in the [ defaults ] section of the
topology file (see 5.7.1):

for combination rule 1 :
Vii = C

(6)
i = 4 εiσ

6
i [ kJ mol−1 nm6 ]

Wii = C
(12)
i = 4 εiσ

12
i [ kJ mol−1 nm12 ]

(5.1)
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for combination rules 2 and 3 :
Vii = σi [ nm ]
Wii = εi [ kJ mol−1 ]

(5.2)

Some or all combinations for different atom types can be given in the [ nonbond_params ]
section, again with parameters V and W as defined above. Any combination that is not given will
be computed from the parameters for the corresponding atom types, according to the combination
rule:

for combination rules 1 and 3 :
C

(6)
ij =

(
C

(6)
i C

(6)
j

) 1
2

C
(12)
ij =

(
C

(12)
i C

(12)
j

) 1
2

(5.3)

for combination rule 2 :
σij = 1

2(σi + σj)
εij =

√
εi εj

(5.4)

When σ and ε need to be supplied (rules 2 and 3), it would seem it is impossible to have a non-zero
C12 combined with a zero C6 parameter. However, providing a negative σ will do exactly that,
such that C6 is set to zero and C12 is calculated normally. This situation represents a special case
in reading the value of σ, and nothing more.

There is only one set of combination rules for Buckingham potentials:

Aij = (AiiAjj)
1/2

Bij = 2/
(

1
Bii

+ 1
Bjj

)
Cij = (CiiCjj)

1/2

(5.5)

5.3.3 Bonded parameters

The bonded parameters (i.e. bonds, bond angles, improper and proper dihedrals) are listed in
ffbonded.itp. The entries in this database describe, respectively, the atom types in the in-
teractions, the type of the interaction, and the parameters associated with that interaction. These
parameters are then read by grompp when processing a topology and applied to the relevant
bonded parameters, i.e. bondtypes are applied to entries in the [ bonds ] directive, etc.
Any bonded parameter that is missing from the relevant [ *type ] directive generates a fatal
error. The types of interactions are listed in Table 5.5. Example excerpts from such files follow:

[ bondtypes ]
; i j func b0 kb

C O 1 0.12300 502080.
C OM 1 0.12500 418400.
......

[ angletypes ]
; i j k func th0 cth
HO OA C 1 109.500 397.480
HO OA CH1 1 109.500 397.480
......

[ dihedraltypes ]
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; i l func q0 cq
NR5* NR5 2 0.000 167.360
NR5* NR5* 2 0.000 167.360
......

[ dihedraltypes ]
; j k func phi0 cp mult

C OA 1 180.000 16.736 2
C N 1 180.000 33.472 2
......

[ dihedraltypes ]
;
; Ryckaert-Bellemans Dihedrals
;
; aj ak funct
CP2 CP2 3 9.2789 12.156 -13.120 -3.0597 26.240 -31.495

In the ffbonded.itp file, you can add bonded parameters. If you want to include parameters
for new atom types, make sure you define them in atomtypes.atp as well.

5.3.4 Intramolecular pair interactions

Extra Lennard-Jones and electrostatic interactions between pairs of atoms in a molecule can be
added in the [ pairs ] section of a molecule definition. The parameters for these interactions
can be set independently from the non-bonded interaction parameters. In the GROMOS force
fields, pairs are only used to modify the 1-4 interactions (interactions of atoms separated by three
bonds). In these force fields the 1-4 interactions are excluded from the non-bonded interactions
(see sec. 5.4).

[ pairtypes ]
; i j func cs6 cs12 ; THESE ARE 1-4 INTERACTIONS

O O 1 0.22617E-02 0.74158E-06
O OM 1 0.22617E-02 0.74158E-06
.....

The pair interaction parameters for the atom types in ffnonbonded.itp are listed in the
[ pairtypes ] section. The GROMOS force fields list all these interaction parameters explic-
itly, but this section might be empty for force fields like OPLS that calculate the 1-4 interactions by
uniformly scaling the parameters. Pair parameters that are not present in the [ pairtypes ]
section are only generated when gen-pairs is set to “yes” in the [ defaults ] directive of
forcefield.itp (see 5.7.1). When gen-pairs is set to “no,” grompp will give a warning
for each pair type for which no parameters are given.

The normal pair interactions, intended for 1-4 interactions, have function type 1. Function type 2
and the [ pairs_nb ] are intended for free-energy simulations. When determining hydration
free energies, the solute needs to be decoupled from the solvent. This can be done by adding a
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B-state topology (see sec. 3.12) that uses zero for all solute non-bonded parameters, i.e. charges
and LJ parameters. However, the free energy difference between the A and B states is not the total
hydration free energy. One has to add the free energy for reintroducing the internal Coulomb and
LJ interactions in the solute when in vacuum. This second step can be combined with the first step
when the Coulomb and LJ interactions within the solute are not modified. For this purpose, there is
a pairs function type 2, which is identical to function type 1, except that the B-state parameters are
always identical to the A-state parameters. For searching the parameters in the [ pairtypes ]
section, no distinction is made between function type 1 and 2. The pairs section [ pairs_nb ]
is intended to replace the non-bonded interaction. It uses the unscaled charges and the non-bonded
LJ parameters; it also only uses the A-state parameters. Note that one should add exclusions for
all atom pairs listed in [ pairs_nb ], otherwise such pairs will also end up in the normal
neighbor lists.

Alternatively, this same behavior can be achieved without ever touching the topology, by using
the couple-moltype, couple-lambda0, couple-lambda1, and couple-intramol
keywords. See sections sec. 3.12 and sec. 6.1 for more information.

All three pair types always use plain Coulomb interactions, even when Reaction-field, PME, Ewald
or shifted Coulomb interactions are selected for the non-bonded interactions. Energies for types
1 and 2 are written to the energy and log file in separate “LJ-14” and “Coulomb-14” entries per
energy group pair. Energies for [ pairs_nb ] are added to the “LJ-(SR)” and “Coulomb-
(SR)” terms.

5.3.5 Implicit solvation parameters

Starting with GROMACS 4.5, implicit solvent is supported. A section in the topology has been
introduced to list those parameters:

[ implicit_genborn_params ]
; Atomtype sar st pi gbr hct
NH1 0.155 1 1.028 0.17063 0.79 ; N
N 0.155 1 1 0.155 0.79 ; Proline backbone N
H 0.1 1 1 0.115 0.85 ; H
CT1 0.180 1 1.276 0.190 0.72 ; C

In this example the atom type is listed first, followed by five numbers, and a comment (following
a semicolon).

Values in columns 1-3 are not currently used. They pertain to more elaborate surface area algo-
rithms, the one from Qiu et al. [70] in particular. Column 4 contains the atomic van der Waals
radii, which are used in computing the Born radii. The dielectric offset is specified in the *.mdp
file, and gets subtracted from the input van der Waals radii for the different Born radii methods, as
described by Onufriev et al. [72]. Column 5 is the scale factor for the HCT and OBC models. The
values are taken from the Tinker implementation of the HCT pairwise scaling method [71]. This
method has been modified such that the scaling factors have been adjusted to minimize differences
between analytical surface areas and GB using the HCT algorithm. The scaling is further modified
in that it is not applied pairwise as proposed by Hawkins et al. [71], but on a per-atom (rather than
a per-pair) basis.
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5.4 Exclusions

The exclusions for non-bonded interactions are generated by grompp for neighboring atoms up
to a certain number of bonds away, as defined in the [ moleculetype ] section in the topol-
ogy file (see 5.7.1). Particles are considered bonded when they are connected by “chemical”
bonds ([ bonds ] types 1 to 5, 7 or 8) or constraints ([ constraints ] type 1). Type 5
[ bonds ] can be used to create a connection between two atoms without creating an interac-
tion. There is a harmonic interaction ([ bonds ] type 6) that does not connect the atoms by a
chemical bond. There is also a second constraint type ([ constraints ] type 2) that fixes
the distance, but does not connect the atoms by a chemical bond. For a complete list of all these
interactions, see Table 5.5.

Extra exclusions within a molecule can be added manually in a [ exclusions ] section. Each
line should start with one atom index, followed by one or more atom indices. All non-bonded
interactions between the first atom and the other atoms will be excluded.

When all non-bonded interactions within or between groups of atoms need to be excluded, is it
more convenient and much more efficient to use energy monitor group exclusions (see sec. 3.3).

5.5 Constraint algorithms

Constraints are defined in the [ constraints ] section. The format is two atom numbers
followed by the function type, which can be 1 or 2, and the constraint distance. The only differ-
ence between the two types is that type 1 is used for generating exclusions and type 2 is not (see
sec. 5.4). The distances are constrained using the LINCS or the SHAKE algorithm, which can
be selected in the *.mdp file. Both types of constraints can be perturbed in free-energy calcula-
tions by adding a second constraint distance (see 5.7.5). Several types of bonds and angles (see
Table 5.5) can be converted automatically to constraints by grompp. There are several options
for this in the *.mdp file.

We have also implemented the SETTLE algorithm [45], which is an analytical solution of SHAKE,
specifically for water. SETTLE can be selected in the topology file. See, for instance, the SPC
molecule definition:

[ moleculetype ]
; molname nrexcl
SOL 1

[ atoms ]
; nr at type res nr ren nm at nm cg nr charge
1 OW 1 SOL OW1 1 -0.82
2 HW 1 SOL HW2 1 0.41
3 HW 1 SOL HW3 1 0.41

[ settles ]
; OW funct doh dhh
1 1 0.1 0.16333
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[ exclusions ]
1 2 3
2 1 3
3 1 2

The [ settles ] directive defines the first atom of the water molecule. The settle funct is
always 1, and the distance between O-H and H-H distances must be given. Note that the algorithm
can also be used for TIP3P and TIP4P [125]. TIP3P just has another geometry. TIP4P has a virtual
site, but since that is generated it does not need to be shaken (nor stirred).

5.6 pdb2gmx input files

The GROMACS program pdb2gmx generates a topology for the input coordinate file. Several
formats are supported for that coordinate file, but *.pdb is the most commonly-used format
(hence the name pdb2gmx). pdb2gmx searches for force fields in sub-directories of the GRO-
MACS share/top directory and your working directory. Force fields are recognized from the
file forcefield.itp in a directory with the extension .ff. The file forcefield.doc
may be present, and if so, its first line will be used by pdb2gmx to present a short description to
the user to help in choosing a force field. Otherwise, the user can choose a force field with the
-ff xxx command-line argument to pdb2gmx, which indicates that a force field in a xxx.ff
directory is desired. pdb2gmx will search first in the working directory, then in the GROMACS
share/top directory, and use the first matching xxx.ff directory found.

Two general files are read by pdb2gmx: an atom type file (extension .atp, see 5.2.1) from the
force-field directory, and a file called residuetypes.dat from either the working directory, or
the GROMACS share/top directory. residuetypes.dat determines which residue names
are considered protein, DNA, RNA, water, and ions.

pdb2gmx can read one or multiple databases with topological information for different types of
molecules. A set of files belonging to one database should have the same basename, preferably
telling something about the type of molecules (e.g. aminoacids, rna, dna). The possible files are:

• <basename>.rtp

• <basename>.r2b (optional)

• <basename>.arn (optional)

• <basename>.hdb (optional)

• <basename>.n.tdb (optional)

• <basename>.c.tdb (optional)

Only the .rtp file, which contains the topologies of the building blocks, is mandatory. Infor-
mation from other files will only be used for building blocks that come from an .rtp file with
the same base name. The user can add building blocks to a force field by having additional files
with the same base name in their working directory. By default, only extra building blocks can be
defined, but calling pdb2gmx with the -rtpo option will allow building blocks in a local file to
replace the default ones in the force field.
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5.6.1 Residue database

The files holding the residue databases have the extension .rtp. Originally this file contained
building blocks (amino acids) for proteins, and is the GROMACS interpretation of the rt37c4.dat
file of GROMOS. So the residue database file contains information (bonds, charges, charge groups,
and improper dihedrals) for a frequently-used building block. It is better not to change this file
because it is standard input for pdb2gmx, but if changes are needed make them in the *.top file
(see 5.7.1), or in a .rtp file in the working directory as explained in sec. 5.6. Defining topologies
of new small molecules is probably easier by writing an include topology file *.itp directly.
This will be discussed in section 5.7.2. When adding a new protein residue to the database, don’t
forget to add the residue name to the residuetypes.dat file, so that grompp, make_ndx
and analysis tools can recognize the residue as a protein residue (see 8.1.1).

The .rtp files are only used by pdb2gmx. As mentioned before, the only extra information this
program needs from the .rtp database is bonds, charges of atoms, charge groups, and improper
dihedrals, because the rest is read from the coordinate input file. Some proteins contain residues
that are not standard, but are listed in the coordinate file. You have to construct a building block for
this “strange” residue, otherwise you will not obtain a *.top file. This also holds for molecules
in the coordinate file such as ligands, polyatomic ions, crystallization co-solvents, etc. The residue
database is constructed in the following way:

[ bondedtypes ] ; mandatory
; bonds angles dihedrals impropers

1 1 1 2 ; mandatory

[ GLY ] ; mandatory

[ atoms ] ; mandatory
; name type charge chargegroup

N N -0.280 0
H H 0.280 0

CA CH2 0.000 1
C C 0.380 2
O O -0.380 2

[ bonds ] ; optional
;atom1 atom2 b0 kb

N H
N CA

CA C
C O

-C N

[ exclusions ] ; optional
;atom1 atom2

[ angles ] ; optional
;atom1 atom2 atom3 th0 cth

[ dihedrals ] ; optional
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;atom1 atom2 atom3 atom4 phi0 cp mult

[ impropers ] ; optional
;atom1 atom2 atom3 atom4 q0 cq

N -C CA H
-C -CA N -O

[ ZN ]

[ atoms ]
ZN ZN 2.000 0

The file is free format; the only restriction is that there can be at most one entry on a line. The first
field in the file is the [ bondedtypes ] field, which is followed by four numbers, indicating
the interaction type for bonds, angles, dihedrals, and improper dihedrals. The file contains residue
entries, which consist of atoms and (optionally) bonds, angles, dihedrals, and impropers. The
charge group codes denote the charge group numbers. Atoms in the same charge group should
always be ordered consecutively. When using the hydrogen database with pdb2gmx for adding
missing hydrogens (see 5.6.4), the atom names defined in the .rtp entry should correspond ex-
actly to the naming convention used in the hydrogen database. The atom names in the bonded
interaction can be preceded by a minus or a plus, indicating that the atom is in the preceding or
following residue respectively. Explicit parameters added to bonds, angles, dihedrals, and im-
propers override the standard parameters in the .itp files. This should only be used in special
cases. Instead of parameters, a string can be added for each bonded interaction. This is used in
GROMOS-96 .rtp files. These strings are copied to the topology file and can be replaced by
force-field parameters by the C-preprocessor in grompp using #define statements.

pdb2gmx automatically generates all angles. This means that for most force fields the [ angles ]
field is only useful for overriding .itp parameters. For the GROMOS-96 force field the interac-
tion number of all angles needs to be specified.

pdb2gmx automatically generates one proper dihedral for every rotatable bond, preferably on
heavy atoms. When the [ dihedrals ] field is used, no other dihedrals will be generated for
the bonds corresponding to the specified dihedrals. It is possible to put more than one dihedral
function on a rotatable bond. In the case of CHARMM27 FF pdb2gmx can add correction maps
to the dihedrals using the default -cmap option. Please refer to 4.10.4 for more information.

pdb2gmx sets the number of exclusions to 3, which means that interactions between atoms con-
nected by at most 3 bonds are excluded. Pair interactions are generated for all pairs of atoms
that are separated by 3 bonds (except pairs of hydrogens). When more interactions need to be
excluded, or some pair interactions should not be generated, an [ exclusions ] field can be
added, followed by pairs of atom names on separate lines. All non-bonded and pair interactions
between these atoms will be excluded.

5.6.2 Residue to building block database

Each force field has its own naming convention for residues. Most residues have consistent nam-
ing, but some, especially those with different protonation states, can have many different names.
The .r2b files are used to convert standard residue names to the force-field build block names. If
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ARG protonated arginine
ARGN neutral arginine
ASP negatively charged aspartic acid
ASPH neutral aspartic acid
CYS neutral cysteine
CYS2 cysteine with sulfur bound to another cysteine or a heme
GLU negatively charged glutamic acid
GLUH neutral glutamic acid
HISD neutral histidine with Nδ protonated
HISE neutral histidine with Nε protonated
HISH positive histidine with both Nδ and Nε protonated
HIS1 histidine bound to a heme
LYSN neutral lysine
LYS protonated lysine
HEME heme

Table 5.3: Internal GROMACS residue naming convention.

no .r2b is present in the force-field directory or a residue is not listed, the building block name is
assumed to be identical to the residue name. The .r2b can contain 2 or 5 columns. The 2-column
format has the residue name in the first column and the building block name in the second. The
5-column format has 3 additional columns with the building block for the residue occurring in
the N-terminus, C-terminus and both termini at the same time (single residue molecule). This is
useful for, for instance, the AMBER force fields. If one or more of the terminal versions are not
present, a dash should be entered in the corresponding column.

There is a GROMACS naming convention for residues which is only apparent (except for the
pdb2gmx code) through the .r2b file and specbond.dat files. This convention is only of
importance when you are adding residue types to an .rtp file. The convention is listed in Ta-
ble 5.3. For special bonds with, for instance, a heme group, the GROMACS naming convention
is introduced through specbond.dat (see 5.6.7), which can subsequently be translated by the
.r2b file, if required.

5.6.3 Atom renaming database

Force fields often use atom names that do not follow IUPAC or PDB convention. The .arn
database is used to translate the atom names in the coordinate file to the force-field names. Atoms
that are not listed keep their names. The file has three columns: the building block name, the
old atom name, and the new atom name, respectively. The residue name supports question-mark
wildcards that match a single character.

An additional general atom renaming file called xlateat.dat is present in the share/top
directory, which translates common non-standard atom names in the coordinate file to IUPAC/PDB
convention. Thus, when writing force-field files, you can assume standard atom names and no
further atom name translation is required, except for translating from standard atom names to the
force-field ones.
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5.6.4 Hydrogen database

The hydrogen database is stored in .hdb files. It contains information for the pdb2gmx program
on how to connect hydrogen atoms to existing atoms. In versions of the database before GRO-
MACS 3.3, hydrogen atoms were named after the atom they are connected to: the first letter of
the atom name was replaced by an ‘H.’ In the versions from 3.3 onwards, the H atom has to be
listed explicitly, because the old behavior was protein-specific and hence could not be generalized
to other molecules. If more than one hydrogen atom is connected to the same atom, a number will
be added to the end of the hydrogen atom name. For example, adding two hydrogen atoms to ND2
(in asparagine), the hydrogen atoms will be named HD21 and HD22. This is important since atom
naming in the .rtp file (see 5.6.1) must be the same. The format of the hydrogen database is as
follows:

; res # additions
# H add type H i j k

ALA 1
1 1 H N -C CA

ARG 4
1 2 H N CA C
1 1 HE NE CD CZ
2 3 HH1 NH1 CZ NE
2 3 HH2 NH2 CZ NE

On the first line we see the residue name (ALA or ARG) and the number of kinds of hydrogen
atoms that may be added to this residue by the hydrogen database. After that follows one line for
each addition, on which we see:

• The number of H atoms added

• The method for adding H atoms, which can be any of:

1 one planar hydrogen, e.g. rings or peptide bond
One hydrogen atom (n) is generated, lying in the plane of atoms (i,j,k) on the plane
bisecting angle (j-i-k) at a distance of 0.1 nm from atom i, such that the angles (n-i-j)
and (n-i-k) are > 90o.

2 one single hydrogen, e.g. hydroxyl
One hydrogen atom (n) is generated at a distance of 0.1 nm from atom i, such that
angle (n-i-j)=109.5 degrees and dihedral (n-i-j-k)=trans.

3 two planar hydrogens, e.g. ethylene -C=CH2, or amide -C(=O)NH2

Two hydrogens (n1,n2) are generated at a distance of 0.1 nm from atom i, such that
angle (n1-i-j)=(n2-i-j)=120 degrees and dihedral (n1-i-j-k)=cis and (n2-i-j-k)=trans,
such that names are according to IUPAC standards [126].

4 two or three tetrahedral hydrogens, e.g. -CH3

Three (n1,n2,n3) or two (n1,n2) hydrogens are generated at a distance of 0.1 nm from
atom i, such that angle (n1-i-j)=(n2-i-j)=(n3-i-j)=109.47o, dihedral (n1-i-j-k)=trans,
(n2-i-j-k)=trans+120 and (n3-i-j-k)=trans+240o.
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5 one tetrahedral hydrogen, e.g. C3CH
One hydrogen atom (n′) is generated at a distance of 0.1 nm from atom i in tetrahedral
conformation such that angle (n′-i-j)=(n′-i-k)=(n′-i-l)=109.47o.

6 two tetrahedral hydrogens, e.g. C-CH2-C
Two hydrogen atoms (n1,n2) are generated at a distance of 0.1 nm from atom i in
tetrahedral conformation on the plane bisecting angle j-i-k with angle (n1-i-n2)=(n1-i-
j)=(n1-i-k)=109.47o.

7 two water hydrogens
Two hydrogens are generated around atom i according to SPC [81] water geometry.
The symmetry axis will alternate between three coordinate axes in both directions.

10 three water “hydrogens”
Two hydrogens are generated around atom i according to SPC [81] water geometry.
The symmetry axis will alternate between three coordinate axes in both directions.
In addition, an extra particle is generated on the position of the oxygen with the first
letter of the name replaced by ‘M’. This is for use with four-atom water models such
as TIP4P [125].

11 four water “hydrogens”
Same as above, except that two additional particles are generated on the position of
the oxygen, with names ‘LP1’ and ‘LP2.’ This is for use with five-atom water models
such as TIP5P [127].

• The name of the new H atom (or its prefix, e.g. HD2 for the asparagine example given
earlier).

• Three or four control atoms (i,j,k,l), where the first always is the atom to which the H atoms
are connected. The other two or three depend on the code selected. For water, there is only
one control atom.

Some more exotic cases can be approximately constructed from the above tools, and with suit-
able use of energy minimization are good enough for beginning MD simulations. For example
secondary amine hydrogen, nitrenyl hydrogen (C=NH) and even ethynyl hydrogen could be ap-
proximately constructed using method 2 above for hydroxyl hydrogen.

5.6.5 Termini database

The termini databases are stored in aminoacids.n.tdb and aminoacids.c.tdb for the N-
and C-termini respectively. They contain information for the pdb2gmx program on how to con-
nect new atoms to existing ones, which atoms should be removed or changed, and which bonded
interactions should be added. Their format is as follows (from gromos43a1.ff/aminoacids.c.tdb):

[ None ]

[ COO- ]
[ replace ]
C C C 12.011 0.27
O O1 OM 15.9994 -0.635
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OXT O2 OM 15.9994 -0.635
[ add ]
2 8 O C CA N
OM 15.9994 -0.635
[ bonds ]
C O1 gb_5
C O2 gb_5
[ angles ]
O1 C O2 ga_37
CA C O1 ga_21
CA C O2 ga_21
[ dihedrals ]
N CA C O2 gd_20
[ impropers ]
C CA O2 O1 gi_1

The file is organized in blocks, each with a header specifying the name of the block. These
blocks correspond to different types of termini that can be added to a molecule. In this example
[ COO- ] is the first block, corresponding to changing the terminal carbon atom into a depro-
tonated carboxyl group. [ None ] is the second terminus type, corresponding to a terminus
that leaves the molecule as it is. Block names cannot be any of the following: replace, add,
delete, bonds, angles, dihedrals, impropers. Doing so would interfere with the pa-
rameters of the block, and would probably also be very confusing to human readers.

For each block the following options are present:

• [ replace ]
Replace an existing atom by one with a different atom type, atom name, charge, and/or
mass. This entry can be used to replace an atom that is present both in the input coordinates
and in the .rtp database, but also to only rename an atom in the input coordinates such
that it matches the name in the force field. In the latter case, there should also be a corre-
sponding [ add ] section present that gives instructions to add the same atom, such that
the position in the sequence and the bonding is known. Such an atom can be present in the
input coordinates and kept, or not present and constructed by pdb2gmx. For each atom to
be replaced on line should be entered with the following fields:

– name of the atom to be replaced

– new atom name (optional)

– new atom type

– new mass

– new charge

• [ add ]
Add new atoms. For each (group of) added atom(s), a two-line entry is necessary. The
first line contains the same fields as an entry in the hydrogen database (name of the new
atom, number of atoms, type of addition, control atoms, see 5.6.4), but the possible types of
addition are extended by two more, specifically for C-terminal additions:
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8 two carboxyl oxygens, -COO−

Two oxygens (n1,n2) are generated according to rule 3, at a distance of 0.136 nm from
atom i and an angle (n1-i-j)=(n2-i-j)=117 degrees

9 carboxyl oxygens and hydrogen, -COOH
Two oxygens (n1,n2) are generated according to rule 3, at distances of 0.123 nm and
0.125 nm from atom i for n1 and n2, respectively, and angles (n1-i-j)=121 and (n2-i-
j)=115 degrees. One hydrogen (n′) is generated around n2 according to rule 2, where
n-i-j and n-i-j-k should be read as n′-n2-i and n′-n2-i-j, respectively.

After this line, another line follows that specifies the details of the added atom(s), in the
same way as for replacing atoms, i.e.:

– atom type

– mass

– charge

– charge group (optional)

Like in the hydrogen database (see 5.6.1), when more than one atom is connected to an
existing one, a number will be appended to the end of the atom name. Note that, like in the
hydrogen database, the atom name is now on the same line as the control atoms, whereas it
was at the beginning of the second line prior to GROMACS version 3.3. When the charge
group field is left out, the added atom will have the same charge group number as the atom
that it is bonded to.

• [ delete ]
Delete existing atoms. One atom name per line.

• [ bonds ], [ angles ], [ dihedrals ] and [ impropers ]
Add additional bonded parameters. The format is identical to that used in the *.rtp file,
see 5.6.1.

5.6.6 Virtual site database

Since we cannot rely on the positions of hydrogens in input files, we need a special input file
to decide the geometries and parameters with which to add virtual site hydrogens. For more
complex virtual site constructs (e.g. when entire aromatic side chains are made rigid) we also need
information about the equilibrium bond lengths and angles for all atoms in the side chain. This
information is specified in the .vsd file for each force field. Just as for the termini, there is one
such file for each class of residues in the .rtp file.

The virtual site database is not really a very simple list of information. The first couple of sections
specify which mass centers (typically called MCH3/MNH3) to use for CH3, NH3, and NH2 groups.
Depending on the equilibrium bond lengths and angles between the hydrogens and heavy atoms
we need to apply slightly different constraint distances between these mass centers. Note that we
do not have to specify the actual parameters (that is automatic), just the type of mass center to use.
To accomplish this, there are three sections names [ CH3 ], [ NH3 ], and [ NH2 ]. For each
of these we expect three columns. The first column is the atom type bound to the 2/3 hydrogens,
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the second column is the next heavy atom type which this is bound, and the third column the type
of mass center to use. As a special case, in the [ NH2 ] section it is also possible to specify
planar in the second column, which will use a different construction without mass center. There
are currently different opinions in some force fields whether an NH2 group should be planar or
not, but we try hard to stick to the default equilibrium parameters of the force field.

The second part of the virtual site database contains explicit equilibrium bond lengths and angles
for pairs/triplets of atoms in aromatic side chains. These entries are currently read by specific
routines in the virtual site generation code, so if you would like to extend it e.g. to nucleic acids
you would also need to write new code there. These sections are named after the short amino
acid names ([ PHE ], [ TYR ], [ TRP ], [ HID ], [ HIE ], [ HIP ]), and simply
contain 2 or 3 columns with atom names, followed by a number specifying the bond length (in
nm) or angle (in degrees). Note that these are approximations of the equilibrated geometry for the
entire molecule, which might not be identical to the equilibrium value for a single bond/angle if
the molecule is strained.

5.6.7 Special bonds

The primary mechanism used by pdb2gmx to generate inter-residue bonds relies on head-to-
tail linking of backbone atoms in different residues to build a macromolecule. In some cases
(e.g. disulfide bonds, a heme group, branched polymers), it is necessary to create inter-residue
bonds that do not lie on the backbone. The file specbond.dat takes care of this function.
It is necessary that the residues belong to the same [ moleculetype ]. The -merge and
-chainsep functions of pdb2gmx can be useful when managing special inter-residue bonds
between different chains.

The first line of specbond.dat indicates the number of entries that are in the file. If you
add a new entry, be sure to increment this number. The remaining lines in the file provide the
specifications for creating bonds. The format of the lines is as follows:

resA atomA nbondsA resB atomB nbondsB length newresA newresB

The columns indicate:

1. resA The name of residue A that participates in the bond.

2. atomA The name of the atom in residue A that forms the bond.

3. nbondsA The total number of bonds atomA can form.

4. resB The name of residue B that participates in the bond.

5. atomB The name of the atom in residue B that forms the bond.

6. nbondsB The total number of bonds atomB can form.

7. length The reference length for the bond. If atomA and atomB are not within length
± 10% in the coordinate file supplied to pdb2gmx, no bond will be formed.

8. newresA The new name of residue A, if necessary. Some force fields use e.g. CYS2 for a
cysteine in a disulfide or heme linkage.
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9. newresB The new name of residue B, likewise.

5.7 File formats

5.7.1 Topology file

The topology file is built following the GROMACS specification for a molecular topology. A
*.top file can be generated by pdb2gmx. All possible entries in the topology file are listed
in Tables 5.4 and 5.5. Also tabulated are: all the units of the parameters, which interactions
can be perturbed for free energy calculations, which bonded interactions are used by grompp for
generating exclusions, and which bonded interactions can be converted to constraints by grompp.
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Parameters
interaction directive # f. parameters F. E.
type at. tp
mandatory defaults non-bonded function type;

combination rule(cr);
generate pairs (no/yes);
fudge LJ (); fudge QQ ()

mandatory atomtypes atom type; m (u); q (e); particle type;
V(cr); W(cr)

bondtypes (see Table 5.5, directive bonds)
pairtypes (see Table 5.5, directive pairs)
angletypes (see Table 5.5, directive angles)
dihedraltypes(∗) (see Table 5.5, directive dihedrals)
constrainttypes (see Table 5.5, directive constraints)

LJ nonbond_params 2 1 V (cr); W (cr)

Buckingham nonbond_params 2 2 a (kJ mol−1); b (nm−1);
c6 (kJ mol−1 nm6)

Molecule definition(s)
mandatory moleculetype molecule name; n(nrexcl)

ex

mandatory atoms 1 atom type; residue number; type
residue name; atom name;
charge group number; q (e); m (u) q,m

intra-molecular interaction and geometry definitions as described in Table 5.5

System
mandatory system system name
mandatory molecules molecule name; number of molecules

‘# at’ is the required number of atom type indices for this directive
‘f. tp’ is the value used to select this function type
‘F. E.’ indicates which of the parameters for this interaction can be

interpolated during free energy calculations
(cr) the combination rule determines the type of LJ parameters, see 5.3.2
(∗) for dihedraltypes one can specify 4 atoms or the inner (outer for improper) 2 atoms
(nrexcl) exclude neighbors nex bonds away for non-bonded interactions
For free energy calculations, type, q and m or no parameters should be added
for topology ‘B’ (λ = 1) on the same line, after the normal parameters.

Table 5.4: The topology (*.top) file.



138
C

hapter
5.

Topologies
Table 5.5: Details of [ moleculetype ] directives

Name of interaction Topology file directive num. func. Order of parameters and their units use in Cross-
atoms∗ type† F.E.?‡ references

bond bonds§,¶ 2 1 b0 (nm); kb (kJ mol−1 nm−2) all 4.2.1
G96 bond bonds§,¶ 2 2 b0 (nm); kb (kJ mol−1 nm−4) all 4.2.1
Morse bonds§,¶ 2 3 b0 (nm); D (kJ mol−1); β (nm−1) all 4.2.2
cubic bond bonds§,¶ 2 4 b0 (nm); Ci=2,3 (kJ mol−1 nm−i) 4.2.3
connection bonds§ 2 5 5.4
harmonic potential bonds 2 6 b0 (nm); kb (kJ mol−1 nm−2) all 4.2.1,5.4
FENE bond bonds§ 2 7 bm (nm); kb (kJ mol−1 nm−2) 4.2.4
tabulated bond bonds§ 2 8 table number (≥ 0); k (kJ mol−1) k 4.2.14
tabulated bond‖ bonds 2 9 table number (≥ 0); k (kJ mol−1) k 4.2.14,5.4
restraint potential bonds 2 10 low, up1, up2 (nm); kdr (kJ mol−1 nm−2) all 4.3.5
extra LJ or Coulomb pairs 2 1 V ∗∗; W ∗∗ all 5.3.4
extra LJ or Coulomb pairs 2 2 fudge QQ (); qi, qj (e), V ∗∗; W ∗∗ 5.3.4
extra LJ or Coulomb pairs_nb 2 1 qi, qj (e); V ∗∗; W ∗∗ 5.3.4
angle angles¶ 3 1 θ0 (deg); kθ (kJ mol−1 rad−2) all 4.2.5
G96 angle angles¶ 3 2 θ0 (deg); kθ (kJ mol−1) all 4.2.6
cross bond-bond angles 3 3 r1e, r2e (nm); krr′ (kJ mol−1 nm−2) 4.2.9
cross bond-angle angles 3 4 r1e, r2e r3e (nm); krθ (kJ mol−1 nm−2) 4.2.10
Urey-Bradley angles¶ 3 5 θ0 (deg); kθ (kJ mol−1 rad−2); r13 (nm);

kUB (kJ mol−1 nm−2)
all 4.2.8

quartic angle angles¶ 3 6 θ0 (deg); Ci=0,1,2,3,4 (kJ mol−1 rad−i) 4.2.11

∗The required number of atom indices for this directive
†The index to use to select this function type
‡Indicates which of the parameters for this interaction can be interpolated during free energy calculations
§This interaction type will be used by grompp for generating exclusions
¶This interaction type can be converted to constraints by grompp
∗∗The combination rule determines the type of LJ parameters, see 5.3.2
‖No connection, and so no exclusions, are generated for this interaction
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Table 5.5: Details of [ moleculetype ] directives

Name of interaction Topology file directive num. func. Order of parameters and their units use in Cross-
atoms∗ type† F.E.?‡ references

tabulated angle angles 3 8 table number (≥ 0); k (kJ mol−1) k 4.2.14
restricted bending potential angles 3 10 θ0 (deg); kθ (kJ mol−1) 4.2.7
proper dihedral dihedrals 4 1 φs (deg); kφ (kJ mol−1); multiplicity φ, k 4.2.13
improper dihedral dihedrals 4 2 ξ0 (deg); kξ (kJ mol−1 rad−2) all 4.2.12
Ryckaert-Bellemans dihedral dihedrals 4 3 C0, C1, C2, C3, C4, C5 (kJ mol−1) all 4.2.13
periodic improper dihedral dihedrals 4 4 φs (deg); kφ (kJ mol−1); multiplicity φ, k 4.2.12
Fourier dihedral dihedrals 4 5 C1, C2, C3, C4 (kJ mol−1) all 4.2.13
tabulated dihedral dihedrals 4 8 table number (≥ 0); k (kJ mol−1) k 4.2.14
proper dihedral (multiple) dihedrals 4 9 φs (deg); kφ (kJ mol−1); multiplicity φ, k 4.2.13
restricted dihedral dihedrals 4 11 φ0 (deg); kφ (kJ mol−1) 4.2.13
combined bending-torsion
potential

dihedrals 4 10 a0, a1, a2, a3, a4 (kJ mol−1) 4.2.13

exclusions exclusions 1 one or more atom indices 5.4
constraint constraints§ 2 1 b0 (nm) all 4.5,5.5
constraint‖ constraints 2 2 b0 (nm) all 4.5,5.5,5.4
SETTLE settles 1 1 dOH, dHH (nm) 3.6.1,5.5
2-body virtual site virtual_sites2 3 1 a () 4.7
3-body virtual site virtual_sites3 4 1 a, b () 4.7
3-body virtual site (fd) virtual_sites3 4 2 a (); d (nm) 4.7
3-body virtual site (fad) virtual_sites3 4 3 θ (deg); d (nm) 4.7
3-body virtual site (out) virtual_sites3 4 4 a, b (); c (nm−1) 4.7
4-body virtual site (fdn) virtual_sites4 5 2 a, b (); c (nm) 4.7
N-body virtual site (COG) virtual_sitesn 1 1 one or more constructing atom indices 4.7
N-body virtual site (COM) virtual_sitesn 1 2 one or more constructing atom indices 4.7
N-body virtual site (COW) virtual_sitesn 1 3 one or more pairs consisting of

constructing atom index and weight
4.7

position restraint position_restraints 1 1 kx, ky, kz (kJ mol−1 nm−2) all 4.3.1
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Table 5.5: Details of [ moleculetype ] directives

Name of interaction Topology file directive num. func. Order of parameters and their units use in Cross-
atoms∗ type† F.E.?‡ references

flat-bottomed position re-
straint

position_restraints 1 2 g, r (nm), k (kJ mol−1 nm−2) 4.3.2

distance restraint distance_restraints 2 1 type; label; low, up1, up2 (nm); weight () 4.3.5
dihedral restraint dihedral_restraints 4 1 φ0 (deg); ∆φ (deg); all 4.3.4
orientation restraint orientation_restraints 2 1 exp.; label; α; c (U nmα); obs. (U);

weight (U−1)
4.3.6

angle restraint angle_restraints 4 1 θ0 (deg); kc (kJ mol−1); multiplicity θ, k 4.3.3
angle restraint (z) angle_restraints_z 2 1 θ0 (deg); kc (kJ mol−1); multiplicity θ, k 4.3.3
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Description of the file layout:

• Semicolon (;) and newline characters surround comments

• On a line ending with \ the newline character is ignored.

• Directives are surrounded by [ and ]

• The topology hierarchy (which must be followed) consists of three levels:

– the parameter level, which defines certain force-field specifications (see Table 5.4)

– the molecule level, which should contain one or more molecule definitions (see Ta-
ble 5.5)

– the system level, containing only system-specific information ([ system ] and
[ molecules ])

• Items should be separated by spaces or tabs, not commas

• Atoms in molecules should be numbered consecutively starting at 1

• Atoms in the same charge group must be listed consecutively

• The file is parsed only once, which implies that no forward references can be treated: items
must be defined before they can be used

• Exclusions can be generated from the bonds or overridden manually

• The bonded force types can be generated from the atom types or overridden per bond

• It is possible to apply multiple bonded interactions of the same type on the same atoms

• Descriptive comment lines and empty lines are highly recommended

• Starting with GROMACS version 3.1.3, all directives at the parameter level can be used
multiple times and there are no restrictions on the order, except that an atom type needs to
be defined before it can be used in other parameter definitions

• If parameters for a certain interaction are defined multiple times for the same combination
of atom types the last definition is used; starting with GROMACS version 3.1.3 grompp
generates a warning for parameter redefinitions with different values

• Using one of the [ atoms ], [ bonds ], [ pairs ], [ angles ], etc. without
having used [ moleculetype ] before is meaningless and generates a warning

• Using [ molecules ] without having used [ system ] before is meaningless and
generates a warning.

• After [ system ] the only allowed directive is [ molecules ]

• Using an unknown string in [ ] causes all the data until the next directive to be ignored
and generates a warning



142 Chapter 5. Topologies

Here is an example of a topology file, urea.top:

;
; Example topology file
;
; The force-field files to be included
#include "amber99.ff/forcefield.itp"

[ moleculetype ]
; name nrexcl
Urea 3

[ atoms ]
1 C 1 URE C 1 0.880229 12.01000 ; amber C type
2 O 1 URE O 2 -0.613359 16.00000 ; amber O type
3 N 1 URE N1 3 -0.923545 14.01000 ; amber N type
4 H 1 URE H11 4 0.395055 1.00800 ; amber H type
5 H 1 URE H12 5 0.395055 1.00800 ; amber H type
6 N 1 URE N2 6 -0.923545 14.01000 ; amber N type
7 H 1 URE H21 7 0.395055 1.00800 ; amber H type
8 H 1 URE H22 8 0.395055 1.00800 ; amber H type

[ bonds ]
1 2
1 3
1 6
3 4
3 5
6 7
6 8

[ dihedrals ]
; ai aj ak al funct definition

2 1 3 4 9
2 1 3 5 9
2 1 6 7 9
2 1 6 8 9
3 1 6 7 9
3 1 6 8 9
6 1 3 4 9
6 1 3 5 9

[ dihedrals ]
3 6 1 2 4
1 4 3 5 4
1 7 6 8 4

[ position_restraints ]
; you wouldn’t normally use this for a molecule like Urea,
; but we include it here for didactic purposes
; ai funct fc

1 1 1000 1000 1000 ; Restrain to a point
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2 1 1000 0 1000 ; Restrain to a line (Y-axis)
3 1 1000 0 0 ; Restrain to a plane (Y-Z-plane)

[ dihedral_restraints ]
; ai aj ak al type label phi dphi kfac power

3 6 1 2 1 1 180 0 1 2
1 4 3 5 1 1 180 0 1 2

; Include TIP3P water topology
#include "amber99/tip3p.itp"

[ system ]
Urea in Water

[ molecules ]
;molecule name nr.
Urea 1
SOL 1000

Here follows the explanatory text.

#include "amber99.ff/forcefield.itp" : this includes the information for the force
field you are using, including bonded and non-bonded parameters. This example uses the AM-
BER99 force field, but your simulation may use a different force field. gromppwill automatically
go and find this file and copy-and-paste its content. That content can be seen in
share/top/amber99.ff/forcefield.itp, and it is

#define _FF_AMBER
#define _FF_AMBER99

[ defaults ]
; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ
1 2 yes 0.5 0.8333

#include "ffnonbonded.itp"
#include "ffbonded.itp"
#include "gbsa.itp"

The two #define statements set up the conditions so that future parts of the topology can know
that the AMBER 99 force field is in use.

[ defaults ] :

• nbfunc is the non-bonded function type. Use 1 (Lennard-Jones) or 2 (Buckingham)

• comb-rule is the number of the combination rule (see 5.3.2).

• gen-pairs is for pair generation. The default is ‘no’, i.e. get 1-4 parameters from the
pairtypes list. When parameters are not present in the list, stop with a fatal error. Setting
‘yes’ generates 1-4 parameters that are not present in the pair list from normal Lennard-
Jones parameters using fudgeLJ



144 Chapter 5. Topologies

• fudgeLJ is the factor by which to multiply Lennard-Jones 1-4 interactions, default 1

• fudgeQQ is the factor by which to multiply electrostatic 1-4 interactions, default 1

• N is the power for the repulsion term in a 6-N potential (with nonbonded-type Lennard-
Jones only), starting with GROMACS version 4.5, mdrun also reads and applies N , for
values not equal to 12 tabulated interaction functions are used (in older version you would
have to use user tabulated interactions).

Note that gen-pairs, fudgeLJ, fudgeQQ, and N are optional. fudgeLJ is only used when
generate pairs is set to ‘yes’, and fudgeQQ is always used. However, if you want to specify N
you need to give a value for the other parameters as well.

Then some other #include statements add in the large amount of data needed to describe the
rest of the force field. We will skip these and return to urea.top. There we will see

[ moleculetype ] : defines the name of your molecule in this *.top and nrexcl = 3 stands
for excluding non-bonded interactions between atoms that are no further than 3 bonds away.

[ atoms ] : defines the molecule, where nr and type are fixed, the rest is user defined. So
atom can be named as you like, cgnr made larger or smaller (if possible, the total charge of a
charge group should be zero), and charges can be changed here too.

[ bonds ] : no comment.

[ pairs ] : LJ and Coulomb 1-4 interactions

[ angles ] : no comment

[ dihedrals ] : in this case there are 9 proper dihedrals (funct = 1), 3 improper (funct =
4) and no Ryckaert-Bellemans type dihedrals. If you want to include Ryckaert-Bellemans type
dihedrals in a topology, do the following (in case of e.g. decane):

[ dihedrals ]
; ai aj ak al funct c0 c1 c2

1 2 3 4 3
2 3 4 5 3

In the original implementation of the potential for alkanes [128] no 1-4 interactions were used,
which means that in order to implement that particular force field you need to remove the 1-4
interactions from the [ pairs ] section of your topology. In most modern force fields, like
OPLS/AA or Amber the rules are different, and the Ryckaert-Bellemans potential is used as a
cosine series in combination with 1-4 interactions.

[ position_restraints ] : harmonically restrain the selected particles to reference posi-
tions (4.3.1). The reference positions are read from a separate coordinate file by grompp.

[ dihedral_restraints ] : restrain selected dihedrals to a reference value. The imple-
mentation of dihedral restraints is described in section 4.3.4 of the manual. The parameters speci-
fied in the [dihedral restraints] directive are as follows:

• type has only one possible value which is 1

• label is unused and has been removed from the code.
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• phi is the value of φ0 in eqn. 4.84 and eqn. 4.85 of the manual.

• dphi is the value of ∆φ in eqn. 4.85 of the manual.

• kfac is analogous to fac in the implementation of distance restraints. It is the factor by
which the force constant is multiplied. By doing so, different restraints can be maintained
with different force constants.

• power is unused and has been removed from the code.

#include "tip3p.itp" : includes a topology file that was already constructed (see sec-
tion 5.7.2).

[ system ] : title of your system, user-defined

[ molecules ] : this defines the total number of (sub)molecules in your system that are de-
fined in this *.top. In this example file, it stands for 1 urea molecule dissolved in 1000 water
molecules. The molecule type SOL is defined in the tip3p.itp file. Each name here must
correspond to a name given with [ moleculetype ] earlier in the topology. The order of the
blocks of molecule types and the numbers of such molecules must match the coordinate file that
accompanies the topology when supplied to grompp. The blocks of molecules do not need to
be contiguous, but some tools (e.g. genion) may act only on the first or last such block of a
particular molecule type. Also, these blocks have nothing to do with the definition of groups (see
sec. 3.3 and sec. 8.1).

5.7.2 Molecule.itp file

If you construct a topology file you will use frequently (like the water molecule, tip3p.itp,
which is already constructed for you) it is good to make a molecule.itp file. This only lists
the information of one particular molecule and allows you to re-use the [ moleculetype ]
in multiple systems without re-invoking pdb2gmx or manually copying and pasting. An example
urea.itp follows:

[ moleculetype ]
; molname nrexcl
URE 3

[ atoms ]
1 C 1 URE C 1 0.880229 12.01000 ; amber C type

...
8 H 1 URE H22 8 0.395055 1.00800 ; amber H type

[ bonds ]
1 2

...
6 8

[ dihedrals ]
; ai aj ak al funct definition

2 1 3 4 9
...
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6 1 3 5 9
[ dihedrals ]

3 6 1 2 4
1 4 3 5 4
1 7 6 8 4

Using *.itp files results in a very short *.top file:

;
; Example topology file
;
; The force field files to be included
#include "amber99.ff/forcefield.itp"

#include "urea.itp"

; Include TIP3P water topology
#include "amber99/tip3p.itp"

[ system ]
Urea in Water

[ molecules ]
;molecule name nr.
Urea 1
SOL 1000

5.7.3 Ifdef statements

A very powerful feature in GROMACS is the use of #ifdef statements in your *.top file. By
making use of this statement, and associated #define statements like were seen in
amber99.ff/forcefield.itp earlier, different parameters for one molecule can be used
in the same *.top file. An example is given for TFE, where there is an option to use different
charges on the atoms: charges derived by De Loof et al. [129] or by Van Buuren and Berend-
sen [130]. In fact, you can use much of the functionality of the C preprocessor, cpp, because
grompp contains similar pre-processing functions to scan the file. The way to make use of the
#ifdef option is as follows:

• either use the option define = -DDeLoof in the *.mdp file (containing grompp input
parameters), or use the line #define DeLoof early in your *.top or *.itp file; and

• put the #ifdef statements in your *.top, as shown below:

...

[ atoms ]
; nr type resnr residu atom cgnr charge mass
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#ifdef DeLoof
; Use Charges from DeLoof

1 C 1 TFE C 1 0.74
2 F 1 TFE F 1 -0.25
3 F 1 TFE F 1 -0.25
4 F 1 TFE F 1 -0.25
5 CH2 1 TFE CH2 1 0.25
6 OA 1 TFE OA 1 -0.65
7 HO 1 TFE HO 1 0.41

#else
; Use Charges from VanBuuren

1 C 1 TFE C 1 0.59
2 F 1 TFE F 1 -0.2
3 F 1 TFE F 1 -0.2
4 F 1 TFE F 1 -0.2
5 CH2 1 TFE CH2 1 0.26
6 OA 1 TFE OA 1 -0.55
7 HO 1 TFE HO 1 0.3

#endif

[ bonds ]
; ai aj funct c0 c1

6 7 1 1.000000e-01 3.138000e+05
1 2 1 1.360000e-01 4.184000e+05
1 3 1 1.360000e-01 4.184000e+05
1 4 1 1.360000e-01 4.184000e+05
1 5 1 1.530000e-01 3.347000e+05
5 6 1 1.430000e-01 3.347000e+05

...

This mechanism is used by pdb2gmx to implement optional position restraints (4.3.1) by #include-
ing an .itp file whose contents will be meaningful only if a particular #define is set (and
spelled correctly!)

5.7.4 Topologies for free energy calculations

Free energy differences between two systems, A and B, can be calculated as described in sec. 3.12.
Systems A and B are described by topologies consisting of the same number of molecules with
the same number of atoms. Masses and non-bonded interactions can be perturbed by adding B
parameters under the [ atoms ] directive. Bonded interactions can be perturbed by adding B
parameters to the bonded types or the bonded interactions. The parameters that can be perturbed
are listed in Tables 5.4 and 5.5. The λ-dependence of the interactions is described in section
sec. 4.5. The bonded parameters that are used (on the line of the bonded interaction definition, or
the ones looked up on atom types in the bonded type lists) is explained in Table 5.6. In most cases,
things should work intuitively. When the A and B atom types in a bonded interaction are not all
identical and parameters are not present for the B-state, either on the line or in the bonded types,
grompp uses the A-state parameters and issues a warning. For free energy calculations, all or no
parameters for topology B (λ = 1) should be added on the same line, after the normal parameters,
in the same order as the normal parameters. From GROMACS 4.6 onward, if λ is treated as a
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B-state atom types parameters parameters in bonded types
all identical to on line A atom types B atom types message

A-state atom types A B A B A B
+AB − x x
+A +B x x

yes − − − − error
− − +AB −
− − +A +B

+AB − x x x x warning
+A +B x x x x
− − − − x x error

no − − +AB − − − warning
− − +A +B − − warning
− − +A x +B −
− − +A x + +B

Table 5.6: The bonded parameters that are used for free energy topologies, on the line of the
bonded interaction definition or looked up in the bond types section based on atom types. A and
B indicate the parameters used for state A and B respectively, + and− indicate the (non-)presence
of parameters in the topology, x indicates that the presence has no influence.

vector, then the bonded-lambdas component controls all bonded terms that are not explicitly
labeled as restraints. Restrain terms are controlled by the restraint-lambdas component.

Below is an example of a topology which changes from 200 propanols to 200 pentanes using the
GROMOS-96 force field.

; Include force field parameters
#include "gromos43a1.ff/forcefield.itp"

[ moleculetype ]
; Name nrexcl
PropPent 3

[ atoms ]
; nr type resnr residue atom cgnr charge mass typeB chargeB massB

1 H 1 PROP PH 1 0.398 1.008 CH3 0.0 15.035
2 OA 1 PROP PO 1 -0.548 15.9994 CH2 0.0 14.027
3 CH2 1 PROP PC1 1 0.150 14.027 CH2 0.0 14.027
4 CH2 1 PROP PC2 2 0.000 14.027
5 CH3 1 PROP PC3 2 0.000 15.035

[ bonds ]
; ai aj funct par_A par_B

1 2 2 gb_1 gb_26
2 3 2 gb_17 gb_26
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3 4 2 gb_26 gb_26
4 5 2 gb_26

[ pairs ]
; ai aj funct

1 4 1
2 5 1

[ angles ]
; ai aj ak funct par_A par_B

1 2 3 2 ga_11 ga_14
2 3 4 2 ga_14 ga_14
3 4 5 2 ga_14 ga_14

[ dihedrals ]
; ai aj ak al funct par_A par_B

1 2 3 4 1 gd_12 gd_17
2 3 4 5 1 gd_17 gd_17

[ system ]
; Name
Propanol to Pentane

[ molecules ]
; Compound #mols
PropPent 200

Atoms that are not perturbed, PC2 and PC3, do not need B-state parameter specifications, since the
B parameters will be copied from the A parameters. Bonded interactions between atoms that are
not perturbed do not need B parameter specifications, as is the case for the last bond in the example
topology. Topologies using the OPLS/AA force field need no bonded parameters at all, since both
the A and B parameters are determined by the atom types. Non-bonded interactions involving one
or two perturbed atoms use the free-energy perturbation functional forms. Non-bonded interac-
tions between two non-perturbed atoms use the normal functional forms. This means that when,
for instance, only the charge of a particle is perturbed, its Lennard-Jones interactions will also be
affected when lambda is not equal to zero or one.

Note that this topology uses the GROMOS-96 force field, in which the bonded interactions are not
determined by the atom types. The bonded interaction strings are converted by the C-preprocessor.
The force-field parameter files contain lines like:

#define gb_26 0.1530 7.1500e+06

#define gd_17 0.000 5.86 3

5.7.5 Constraint forces

The constraint force between two atoms in one molecule can be calculated with the free energy
perturbation code by adding a constraint between the two atoms, with a different length in the A



150 Chapter 5. Topologies

and B topology. When the B length is 1 nm longer than the A length and lambda is kept con-
stant at zero, the derivative of the Hamiltonian with respect to lambda is the constraint force. For
constraints between molecules, the pull code can be used, see sec. 6.4. Below is an example for
calculating the constraint force at 0.7 nm between two methanes in water, by combining the two
methanes into one “molecule.” Note that the definition of a “molecule” in GROMACS does not
necessarily correspond to the chemical definition of a molecule. In GROMACS, a “molecule” can
be defined as any group of atoms that one wishes to consider simultaneously. The added constraint
is of function type 2, which means that it is not used for generating exclusions (see sec. 5.4). Note
that the constraint free energy term is included in the derivative term, and is specifically included
in the bonded-lambdas component. However, the free energy for changing constraints is not
included in the potential energy differences used for BAR and MBAR, as this requires reevaluating
the energy at each of the constraint components. This functionality is planned for later versions.

; Include force-field parameters
#include "gromos43a1.ff/forcefield.itp"

[ moleculetype ]
; Name nrexcl
Methanes 1

[ atoms ]
; nr type resnr residu atom cgnr charge mass

1 CH4 1 CH4 C1 1 0 16.043
2 CH4 1 CH4 C2 2 0 16.043

[ constraints ]
; ai aj funct length_A length_B

1 2 2 0.7 1.7

#include "gromos43a1.ff/spc.itp"

[ system ]
; Name
Methanes in Water

[ molecules ]
; Compound #mols
Methanes 1
SOL 2002

5.7.6 Coordinate file

Files with the .gro file extension contain a molecular structure in GROMOS-87 format. A sample
piece is included below:

MD of 2 waters, reformat step, PA aug-91
6
1WATER OW1 1 0.126 1.624 1.679 0.1227 -0.0580 0.0434
1WATER HW2 2 0.190 1.661 1.747 0.8085 0.3191 -0.7791
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1WATER HW3 3 0.177 1.568 1.613 -0.9045 -2.6469 1.3180
2WATER OW1 4 1.275 0.053 0.622 0.2519 0.3140 -0.1734
2WATER HW2 5 1.337 0.002 0.680 -1.0641 -1.1349 0.0257
2WATER HW3 6 1.326 0.120 0.568 1.9427 -0.8216 -0.0244

1.82060 1.82060 1.82060

This format is fixed, i.e. all columns are in a fixed position. If you want to read such a file in your
own program without using the GROMACS libraries you can use the following formats:

C-format: "%5i%5s%5s%5i%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f"

Or to be more precise, with title etc. it looks like this:

"%s\n", Title
"%5d\n", natoms
for (i=0; (i<natoms); i++) {
"%5d%-5s%5s%5d%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f\n",

residuenr,residuename,atomname,atomnr,x,y,z,vx,vy,vz
}
"%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f\n",
box[X][X],box[Y][Y],box[Z][Z],
box[X][Y],box[X][Z],box[Y][X],box[Y][Z],box[Z][X],box[Z][Y]

Fortran format: (i5,2a5,i5,3f8.3,3f8.4)

So confin.gro is the GROMACS coordinate file and is almost the same as the GROMOS-87
file (for GROMOS users: when used with ntx=7). The only difference is the box for which
GROMACS uses a tensor, not a vector.

5.8 Force field organization

5.8.1 Force-field files

Many force fields are available by default. Force fields are detected by the presence of <name>.ff
directories in the $GMXLIB/share/gromacs/top sub-directory and/or the working direc-
tory. The information regarding the location of the force field files is printed by pdb2gmx so
you can easily keep track of which version of a force field is being called, in case you have made
modifications in one location or another. The force fields included with GROMACS are:

• AMBER03 protein, nucleic AMBER94 (Duan et al., J. Comp. Chem. 24, 1999-2012, 2003)

• AMBER94 force field (Cornell et al., JACS 117, 5179-5197, 1995)

• AMBER96 protein, nucleic AMBER94 (Kollman et al., Acc. Chem. Res. 29, 461-469, 1996)

• AMBER99 protein, nucleic AMBER94 (Wang et al., J. Comp. Chem. 21, 1049-1074, 2000)

• AMBER99SB protein, nucleic AMBER94 (Hornak et al., Proteins 65, 712-725, 2006)

• AMBER99SB-ILDN protein, nucleic AMBER94 (Lindorff-Larsen et al., Proteins 78, 1950-58, 2010)
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• AMBERGS force field (Garcia & Sanbonmatsu, PNAS 99, 2782-2787, 2002)

• CHARMM27 all-atom force field (CHARM22 plus CMAP for proteins)

• GROMOS96 43a1 force field

• GROMOS96 43a2 force field (improved alkane dihedrals)

• GROMOS96 45a3 force field (Schuler JCC 2001 22 1205)

• GROMOS96 53a5 force field (JCC 2004 vol 25 pag 1656)

• GROMOS96 53a6 force field (JCC 2004 vol 25 pag 1656)

• GROMOS96 54a7 force field (Eur. Biophys. J. (2011), 40,, 843-856, DOI: 10.1007/s00249-011-
0700-9)

• OPLS-AA/L all-atom force field (2001 aminoacid dihedrals)

A force field is included at the beginning of a topology file with an #include statement followed
by <name>.ff/forcefield.itp. This statement includes the force-field file, which, in turn,
may include other force-field files. All the force fields are organized in the same way. An example
of the amber99.ff/forcefield.itp was shown in 5.7.1.

For each force field, there several files which are only used by pdb2gmx. These are: residue
databases (.rtp, see 5.6.1) the hydrogen database (.hdb, see 5.6.4), two termini databases
(.n.tdb and .c.tdb, see 5.6.5) and the atom type database (.atp, see 5.2.1), which contains
only the masses. Other optional files are described in sec. 5.6.

5.8.2 Changing force-field parameters

If one wants to change the parameters of few bonded interactions in a molecule, this is most easily
accomplished by typing the parameters behind the definition of the bonded interaction directly in
the *.top file under the [ moleculetype ] section (see 5.7.1 for the format and units). If
one wants to change the parameters for all instances of a certain interaction one can change them
in the force-field file or add a new [ ???types ] section after including the force field. When
parameters for a certain interaction are defined multiple times, the last definition is used. As of
GROMACS version 3.1.3, a warning is generated when parameters are redefined with a different
value. Changing the Lennard-Jones parameters of an atom type is not recommended, because in
the GROMOS force fields the Lennard-Jones parameters for several combinations of atom types
are not generated according to the standard combination rules. Such combinations (and possibly
others that do follow the combination rules) are defined in the [ nonbond_params ] section,
and changing the Lennard-Jones parameters of an atom type has no effect on these combinations.

5.8.3 Adding atom types

As of GROMACS version 3.1.3, atom types can be added in an extra [ atomtypes ] section
after the the inclusion of the normal force field. After the definition of the new atom type(s), ad-
ditional non-bonded and pair parameters can be defined. In pre-3.1.3 versions of GROMACS, the
new atom types needed to be added in the [ atomtypes ] section of the force-field files, be-
cause all non-bonded parameters above the last [ atomtypes ] section would be overwritten
using the standard combination rules.
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Special Topics

6.1 Free energy implementation

For free energy calculations, there are two things that must be specified; the end states, and the
pathway connecting the end states. The end states can be specified in two ways. The most straight-
forward is through the specification of end states in the topology file. Most potential forms support
both an A state and a B state. Whenever both states are specified, then the A state corresponds to
the initial free energy state, and the B state corresponds to the final state.

In some cases, the end state can also be defined in some cases without altering the topology,
solely through the .mdp file, through the use of the couple-moltype,couple-lambda0,
couple-lambda1, and couple-intramol mdp keywords. Any molecule type selected in
couple-moltypewill automatically have aB state implicitly constructed (and theA state rede-
fined) according to the couple-lambda keywords. couple-lambda0 and couple-lambda1
define the non-bonded parameters that are present in the A state (couple-lambda0) and the B
state (couple-lambda1). The choices are ’q’,’vdw’, and ’vdw-q’; these indicate the Coulom-
bic, van der Waals, or both parameters that are turned on in the respective state.

Once the end states are defined, then the path between the end states has to be defined. This path
is defined solely in the .mdp file. Starting in 4.6, λ is a vector of components, with Coulombic,
van der Waals, bonded, restraint, and mass components all able to be adjusted independently. This
makes it possible to turn off the Coulombic term linearly, and then the van der Waals using soft
core, all in the same simulation. This is especially useful for replica exchange or expanded en-
semble simulations, where it is important to sample all the way from interacting to non-interacting
states in the same simulation to improve sampling.

fep-lambdas is the default array of λ values ranging from 0 to 1. All of the other lambda arrays
use the values in this array if they are not specified. The previous behavior, where the pathway
is controlled by a single λ variable, can be preserved by using only fep-lambdas to define the
pathway.

For example, if you wanted to first to change the Coulombic terms, then the van der Waals terms,
changing bonded at the same time rate as the van der Waals, but changing the restraints throughout
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the first two-thirds of the simulation, then you could use this λ vector:

coul-lambdas = 0.0 0.2 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
vdw-lambdas = 0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.7 0.8 1.0
bonded-lambdas = 0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.7 0.8 1.0
restraint-lambdas = 0.0 0.0 0.1 0.2 0.3 0.5 0.7 1.0 1.0 1.0

This is also equivalent to:

fep-lambdas = 0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.7 0.8 1.0
coul-lambdas = 0.0 0.2 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
restraint-lambdas = 0.0 0.0 0.1 0.2 0.3 0.5 0.7 1.0 1.0 1.0

The fep-lambda array, in this case, is being used as the default to fill in the bonded and van
der Waals λ arrays. Usually, it’s best to fill in all arrays explicitly, just to make sure things are
properly assigned.

If you want to turn on only restraints going from A to B, then it would be:

restraint-lambdas = 0.0 0.1 0.2 0.4 0.6 1.0

and all of the other components of the λ vector would be left in the A state.

To compute free energies with a vector λ using thermodynamic integration, then the TI equation
becomes vector equation:

∆F =

∫
〈∇H〉 · d~λ (6.1)

or for finite differences:
∆F ≈

∫ ∑
〈∇H〉 ·∆λ (6.2)

The external pymbar script downloaded from https://SimTK.org/home/pymbar can compute this
integral automatically from the GROMACS dhdl.xvg output.

6.2 Potential of mean force

A potential of mean force (PMF) is a potential that is obtained by integrating the mean force from
an ensemble of configurations. In GROMACS, there are several different methods to calculate the
mean force. Each method has its limitations, which are listed below.

• pull code: between the centers of mass of molecules or groups of molecules.

• free-energy code with harmonic bonds or constraints: between single atoms.

• free-energy code with position restraints: changing the conformation of a relatively im-
mobile group of atoms.
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• pull code in limited cases: between groups of atoms that are part of a larger molecule for
which the bonds are constrained with SHAKE or LINCS. If the pull group if relatively large,
the pull code can be used.

The pull and free-energy code a described in more detail in the following two sections.

Entropic effects

When a distance between two atoms or the centers of mass of two groups is constrained or re-
strained, there will be a purely entropic contribution to the PMF due to the rotation of the two
groups [131]. For a system of two non-interacting masses the potential of mean force is:

Vpmf (r) = −(nc − 1)kBT log(r) (6.3)

where nc is the number of dimensions in which the constraint works (i.e. nc = 3 for a normal con-
straint and nc = 1 when only the z-direction is constrained). Whether one needs to correct for this
contribution depends on what the PMF should represent. When one wants to pull a substrate into a
protein, this entropic term indeed contributes to the work to get the substrate into the protein. But
when calculating a PMF between two solutes in a solvent, for the purpose of simulating without
solvent, the entropic contribution should be removed. Note that this term can be significant; when
at 300K the distance is halved, the contribution is 3.5 kJ mol−1.

6.3 Non-equilibrium pulling

When the distance between two groups is changed continuously, work is applied to the system,
which means that the system is no longer in equilibrium. Although in the limit of very slow pulling
the system is again in equilibrium, for many systems this limit is not reachable within reasonable
computational time. However, one can use the Jarzynski relation [132] to obtain the equilibrium
free-energy difference ∆G between two distances from many non-equilibrium simulations:

∆GAB = −kBT log
〈
e−βWAB

〉
A

(6.4)

where WAB is the work performed to force the system along one path from state A to B, the
angular bracket denotes averaging over a canonical ensemble of the initial state A and β = 1/kBT .

6.4 The pull code

The pull code applies forces or constraints between the centers of mass of one or more pairs of
groups of atoms. Each pull reaction coordinate is called a “coordinate” and it operates on two pull
groups. A pull group can be part of one or more pull coordinates. Furthermore, a coordinate can
also operate on a single group and an absolute reference position in space. The distance between
a pair of groups can be determined in 1, 2 or 3 dimensions, or can be along a user-defined vector.
The reference distance can be constant or can change linearly with time. Normally all atoms are
weighted by their mass, but an additional weighting factor can also be used.
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V

z
z

link
spring rup

Figure 6.1: Schematic picture of pulling a lipid out of a lipid bilayer with umbrella pulling. Vrup
is the velocity at which the spring is retracted, Zlink is the atom to which the spring is attached
and Zspring is the location of the spring.

Three different types of calculation are supported, and in all cases the reference distance can be
constant or linearly changing with time.

1. Umbrella pulling A harmonic potential is applied between the centers of mass of two
groups. Thus, the force is proportional to the displacement.

2. Constraint pulling The distance between the centers of mass of two groups is constrained.
The constraint force can be written to a file. This method uses the SHAKE algorithm but
only needs 1 iteration to be exact if only two groups are constrained.

3. Constant force pulling A constant force is applied between the centers of mass of two
groups. Thus, the potential is linear. In this case there is no reference distance of pull rate.

Definition of the center of mass

In GROMACS, there are three ways to define the center of mass of a group. The standard way
is a “plain” center of mass, possibly with additional weighting factors. With periodic boundary
conditions it is no longer possible to uniquely define the center of mass of a group of atoms.
Therefore, a reference atom is used. For determining the center of mass, for all other atoms in the
group, the closest periodic image to the reference atom is used. This uniquely defines the center of
mass. By default, the middle (determined by the order in the topology) atom is used as a reference
atom, but the user can also select any other atom if it would be closer to center of the group.

For a layered system, for instance a lipid bilayer, it may be of interest to calculate the PMF of
a lipid as function of its distance from the whole bilayer. The whole bilayer can be taken as
reference group in that case, but it might also be of interest to define the reaction coordinate for
the PMF more locally. The .mdp option pull_geometry = cylinder does not use all the
atoms of the reference group, but instead dynamically only those within a cylinder with radius
r_1 around the pull vector going through the pull group. This only works for distances defined in
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Figure 6.2: Comparison of a plain center of mass reference group versus a cylinder reference
group applied to interface systems. C is the reference group. The circles represent the center of
mass of two groups plus the reference group, dc is the reference distance.

one dimension, and the cylinder is oriented with its long axis along this one dimension. A second
cylinder can be defined with r_0, with a linear switch function that weighs the contribution of
atoms between r_0 and r_1 with distance. This smooths the effects of atoms moving in and out
of the cylinder (which causes jumps in the pull forces).

For a group of molecules in a periodic system, a plain reference group might not be well-defined.
An example is a water slab that is connected periodically in x and y, but has two liquid-vapor
interfaces along z. In such a setup, water molecules can evaporate from the liquid and they will
move through the vapor, through the periodic boundary, to the other interface. Such a system is
inherently periodic and there is no proper way of defining a “plain” center of mass along z. A
proper solution is to using a cosine shaped weighting profile for all atoms in the reference group.
The profile is a cosine with a single period in the unit cell. Its phase is optimized to give the
maximum sum of weights, including mass weighting. This provides a unique and continuous
reference position that is nearly identical to the plain center of mass position in case all atoms are
all within a half of the unit-cell length. See ref [133] for details.

When relative weightswi are used during the calculations, either by supplying weights in the input
or due to cylinder geometry or due to cosine weighting, the weights need to be scaled to conserve
momentum:

w′i = wi

N∑
j=1

wjmj

/
N∑
j=1

w2
j mj (6.5)

where mj is the mass of atom j of the group. The mass of the group, required for calculating the
constraint force, is:

M =
N∑
i=1

w′imi (6.6)
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The definition of the weighted center of mass is:

rcom =
N∑
i=1

w′imi ri

/
M (6.7)

From the centers of mass the AFM, constraint, or umbrella force Fcom on each group can be
calculated. The force on the center of mass of a group is redistributed to the atoms as follows:

Fi =
w′imi

M
Fcom (6.8)

Limitations

There is one theoretical limitation: strictly speaking, constraint forces can only be calculated
between groups that are not connected by constraints to the rest of the system. If a group contains
part of a molecule of which the bond lengths are constrained, the pull constraint and LINCS
or SHAKE bond constraint algorithms should be iterated simultaneously. This is not done in
GROMACS. This means that for simulations with constraints = all-bonds in the .mdp
file pulling is, strictly speaking, limited to whole molecules or groups of molecules. In some
cases this limitation can be avoided by using the free energy code, see sec. 6.7. In practice, the
errors caused by not iterating the two constraint algorithms can be negligible when the pull group
consists of a large amount of atoms and/or the pull force is small. In such cases, the constraint
correction displacement of the pull group is small compared to the bond lengths.

6.5 Enforced Rotation

This module can be used to enforce the rotation of a group of atoms, as e.g. a protein subunit.
There are a variety of rotation potentials, among them complex ones that allow flexible adaptations
of both the rotated subunit as well as the local rotation axis during the simulation. An example
application can be found in ref. [134].

6.5.1 Fixed Axis Rotation

Stationary Axis with an Isotropic Potential

In the fixed axis approach (see Fig. 6.3B), torque on a group ofN atoms with positions xi (denoted
“rotation group”) is applied by rotating a reference set of atomic positions – usually their initial
positions y0

i – at a constant angular velocity ω around an axis defined by a direction vector v̂ and
a pivot point u. To that aim, each atom with position xi is attracted by a “virtual spring” potential
to its moving reference position yi = Ω(t)(y0

i − u), where Ω(t) is a matrix that describes the
rotation around the axis. In the simplest case, the “springs” are described by a harmonic potential,

V iso =
k

2

N∑
i=1

wi
[
Ω(t)(y0

i − u)− (xi − u)
]2
, (6.9)
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Figure 6.3: Comparison of fixed and flexible axis rotation. A: Rotating the sketched shape inside
the white tubular cavity can create artifacts when a fixed rotation axis (dashed) is used. More
realistically, the shape would revolve like a flexible pipe-cleaner (dotted) inside the bearing (gray).
B: Fixed rotation around an axis v with a pivot point specified by the vector u. C: Subdividing
the rotating fragment into slabs with separate rotation axes (↑) and pivot points (•) for each slab
allows for flexibility. The distance between two slabs with indices n and n+ 1 is ∆x.

with optional mass-weighted prefactors wi = N mi/M with total mass M =
∑N
i=1mi. The

rotation matrix Ω(t) is

Ω(t) =

 cosωt+ v2
x ξ vxvy ξ − vz sinωt vxvz ξ + vy sinωt

vxvy ξ + vz sinωt cosωt+ v2
y ξ vyvz ξ − vx sinωt

vxvz ξ − vy sinωt vyvz ξ + vx sinωt cosωt+ v2
z ξ

 ,
where vx, vy, and vz are the components of the normalized rotation vector v̂, and ξ := 1−cos(ωt).
As illustrated in Fig. 6.4A for a single atom j, the rotation matrix Ω(t) operates on the initial
reference positions y0

j = xj(t0) of atom j at t = t0. At a later time t, the reference position has
rotated away from its initial place (along the blue dashed line), resulting in the force

F iso
j = −∇j V iso = k wj

[
Ω(t)(y0

j − u)− (xj − u)
]
, (6.10)

which is directed towards the reference position.

Pivot-Free Isotropic Potential

Instead of a fixed pivot vector u this potential uses the center of mass xc of the rotation group as
pivot for the rotation axis,

xc =
1

M

N∑
i=1

mixi and y0
c =

1

M

N∑
i=1

miy
0
i , (6.11)

which yields the “pivot-free” isotropic potential

V iso-pf =
k

2

N∑
i=1

wi
[
Ω(t)(y0

i − y0
c)− (xi − xc)

]2
, (6.12)
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V rm, V flexV iso

V rm2, V flex2 (ε′ = 0.01 nm2)V rm2, V flex2 (ε′ = 0 nm2)

Figure 6.4: Selection of different rotation potentials and definition of notation. All four potentials
V (color coded) are shown for a single atom at position xj(t). A: Isotropic potential V iso, B:
radial motion potential V rm and flexible potential V flex, C–D: radial motion 2 potential V rm2

and flexible 2 potential V flex2 for ε′ = 0 nm2 (C) and ε′ = 0.01 nm2 (D). The rotation axis is
perpendicular to the plane and marked by ⊗. The light gray contours indicate Boltzmann factors
e−V/(kBT ) in the xj-plane for T = 300 K and k = 200 kJ/(mol·nm2). The green arrow shows
the direction of the force Fj acting on atom j; the blue dashed line indicates the motion of the
reference position.
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with forces
Fiso-pf
j = k wj

[
Ω(t)(y0

j − y0
c)− (xj − xc)

]
. (6.13)

Without mass-weighting, the pivot xc is the geometrical center of the group.

Parallel Motion Potential Variant

The forces generated by the isotropic potentials (eqns. 6.9 and 6.12) also contain components
parallel to the rotation axis and thereby restrain motions along the axis of either the whole ro-
tation group (in case of V iso) or within the rotation group (in case of V iso-pf ). For cases where
unrestrained motion along the axis is preferred, we have implemented a “parallel motion” variant
by eliminating all components parallel to the rotation axis for the potential. This is achieved by
projecting the distance vectors between reference and actual positions

ri = Ω(t)(y0
i − u)− (xi − u) (6.14)

onto the plane perpendicular to the rotation vector,

r⊥i := ri − (ri · v̂)v̂ , (6.15)

yielding

V pm =
k

2

N∑
i=1

wi(r
⊥
i )2

=
k

2

N∑
i=1

wi
{
Ω(t)(y0

i − u)− (xi − u)

−
{[

Ω(t)(y0
i − u)− (xi − u)

]
· v̂
}
v̂
}2
, (6.16)

and similarly
F pm
j = k wj r

⊥
j . (6.17)

Pivot-Free Parallel Motion Potential

Replacing in eqn. 6.16 the fixed pivot u by the center of mass xc yields the pivot-free variant of
the parallel motion potential. With

si = Ω(t)(y0
i − y0

c)− (xi − xc) (6.18)

the respective potential and forces are

V pm-pf =
k

2

N∑
i=1

wi(s
⊥
i )2 , (6.19)

F pm-pf
j = k wj s

⊥
j . (6.20)
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Radial Motion Potential

In the above variants, the minimum of the rotation potential is either a single point at the reference
position yi (for the isotropic potentials) or a single line through yi parallel to the rotation axis (for
the parallel motion potentials). As a result, radial forces restrict radial motions of the atoms. The
two subsequent types of rotation potentials, V rm and V rm2, drastically reduce or even eliminate
this effect. The first variant, V rm (Fig. 6.4B), eliminates all force components parallel to the vector
connecting the reference atom and the rotation axis,

V rm =
k

2

N∑
i=1

wi [pi · (xi − u)]2 , (6.21)

with

pi :=
v̂ ×Ω(t)(y0

i − u)

‖v̂ ×Ω(t)(y0
i − u)‖

. (6.22)

This variant depends only on the distance pi · (xi−u) of atom i from the plane spanned by v̂ and
Ω(t)(y0

i − u). The resulting force is

Frm
j = −k wj

[
pj · (xj − u)

]
pj . (6.23)

Pivot-Free Radial Motion Potential

Proceeding similar to the pivot-free isotropic potential yields a pivot-free version of the above
potential. With

qi :=
v̂ ×Ω(t)(y0

i − y0
c)

‖v̂ ×Ω(t)(y0
i − y0

c)‖
, (6.24)

the potential and force for the pivot-free variant of the radial motion potential read

V rm-pf =
k

2

N∑
i=1

wi [qi · (xi − xc)]
2 , (6.25)

Frm-pf
j = −k wj

[
qj · (xj − xc)

]
qj + k

mj

M

N∑
i=1

wi [qi · (xi − xc)] qi . (6.26)

Radial Motion 2 Alternative Potential

As seen in Fig. 6.4B, the force resulting from V rm still contains a small, second-order radial
component. In most cases, this perturbation is tolerable; if not, the following alternative, V rm2,
fully eliminates the radial contribution to the force, as depicted in Fig. 6.4C,

V rm2 =
k

2

N∑
i=1

wi

[
(v̂ × (xi − u)) ·Ω(t)(y0

i − u)
]2

‖v̂ × (xi − u)‖2 + ε′
, (6.27)

where a small parameter ε′ has been introduced to avoid singularities. For ε′ = 0 nm2, the equipo-
tential planes are spanned by xi − u and v̂, yielding a force perpendicular to xi − u, thus not
contracting or expanding structural parts that moved away from or toward the rotation axis.
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Choosing a small positive ε′ (e.g., ε′ = 0.01 nm2, Fig. 6.4D) in the denominator of eqn. 6.27 yields
a well-defined potential and continuous forces also close to the rotation axis, which is not the case
for ε′ = 0 nm2 (Fig. 6.4C). With

ri := Ω(t)(y0
i − u) (6.28)

si :=
v̂ × (xi − u)

‖v̂ × (xi − u)‖
≡ Ψi v̂ × (xi − u) (6.29)

Ψ∗i :=
1

‖v̂ × (xi − u)‖2 + ε′
(6.30)

the force on atom j reads

F rm2
j = −k

{
wj (sj · rj)

[
Ψ∗j
Ψj
rj −

Ψ∗2j
Ψ3
j

(sj · rj)sj

]}
× v̂. (6.31)

Pivot-Free Radial Motion 2 Potential

The pivot-free variant of the above potential is

V rm2-pf =
k

2

N∑
i=1

wi

[
(v̂ × (xi − xc)) ·Ω(t)(y0

i − yc)
]2

‖v̂ × (xi − xc)‖2 + ε′
. (6.32)

With

ri := Ω(t)(y0
i − yc) (6.33)

si :=
v̂ × (xi − xc)
‖v̂ × (xi − xc)‖

≡ Ψi v̂ × (xi − xc) (6.34)

Ψ∗i :=
1

‖v̂ × (xi − xc)‖2 + ε′
(6.35)

the force on atom j reads

F rm2-pf
j = −k

{
wj (sj · rj)

[
Ψ∗j
Ψj
rj −

Ψ∗2j
Ψ3
j

(sj · rj)sj

]}
× v̂

+k
mj

M

{
N∑
i=1

wi (si · ri)
[

Ψ∗i
Ψi
ri −

Ψ∗2i
Ψ3
i

(si · ri) si

]}
× v̂ . (6.36)

6.5.2 Flexible Axis Rotation

As sketched in Fig. 6.3A–B, the rigid body behavior of the fixed axis rotation scheme is a drawback
for many applications. In particular, deformations of the rotation group are suppressed when the
equilibrium atom positions directly depend on the reference positions. To avoid this limitation,
eqns. 6.26 and 6.32 will now be generalized towards a “flexible axis” as sketched in Fig. 6.3C. This
will be achieved by subdividing the rotation group into a set of equidistant slabs perpendicular to
the rotation vector, and by applying a separate rotation potential to each of these slabs. Fig. 6.3C
shows the midplanes of the slabs as dotted straight lines and the centers as thick black dots.
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Figure 6.5: Gaussian functions gn centered at n∆x for a slab distance ∆x = 1.5 nm and n ≥ −2.
Gaussian function g0 is highlighted in bold; the dashed line depicts the sum of the shown Gaussian
functions.

To avoid discontinuities in the potential and in the forces, we define “soft slabs” by weighing the
contributions of each slab n to the total potential function V flex by a Gaussian function

gn(xi) = Γ exp

(
−β

2
n(xi)

2σ2

)
, (6.37)

centered at the midplane of the nth slab. Here σ is the width of the Gaussian function, ∆x the
distance between adjacent slabs, and

βn(xi) := xi · v̂ − n∆x . (6.38)

A most convenient choice is σ = 0.7∆x and

1/Γ =
∑
n∈Z

exp

(
−

(n− 1
4)2

2 · 0.72

)
≈ 1.75464 ,

which yields a nearly constant sum, essentially independent of xi (dashed line in Fig. 6.5), i.e.,∑
n∈Z

gn(xi) = 1 + ε(xi) , (6.39)

with |ε(xi)| < 1.3 · 10−4. This choice also implies that the individual contributions to the force
from the slabs add up to unity such that no further normalization is required.

To each slab center xnc , all atoms contribute by their Gaussian-weighted (optionally also mass-
weighted) position vectors gn(xi)xi. The instantaneous slab centers xnc are calculated from the
current positions xi,

xnc =

∑N
i=1 gn(xi)mi xi∑N
i=1 gn(xi)mi

, (6.40)

while the reference centers ync are calculated from the reference positions y0
i ,

ync =

∑N
i=1 gn(y0

i )mi y
0
i∑N

i=1 gn(y0
i )mi

. (6.41)

Due to the rapid decay of gn, each slab will essentially involve contributions from atoms located
within ≈ 3∆x from the slab center only.
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Flexible Axis Potential

We consider two flexible axis variants. For the first variant, the slab segmentation procedure with
Gaussian weighting is applied to the radial motion potential (eqn. 6.26 / Fig. 6.4B), yielding as the
contribution of slab n

V n =
k

2

N∑
i=1

wi gn(xi) [qni · (xi − xnc )]2 ,

and a total potential function

V flex =
∑
n

V n . (6.42)

Note that the global center of mass xc used in eqn. 6.26 is now replaced by xnc , the center of mass
of the slab. With

qni :=
v̂ ×Ω(t)(y0

i − ync )

‖v̂ ×Ω(t)(y0
i − ync )‖

(6.43)

bni := qni · (xi − xnc ) , (6.44)

the resulting force on atom j reads

F flex
j = − k wj

∑
n

gn(xj) b
n
j

{
qnj − bnj

βn(xj)

2σ2
v̂

}

+ kmj

∑
n

gn(xj)∑
h gn(xh)

N∑
i=1

wi gn(xi) b
n
i

{
qni −

βn(xj)

σ2
[qni · (xj − xnc )] v̂

}
. (6.45)

Note that for V flex, as defined, the slabs are fixed in space and so are the reference centers ync . If
during the simulation the rotation group moves too far in v direction, it may enter a region where
– due to the lack of nearby reference positions – no reference slab centers are defined, rendering
the potential evaluation impossible. We therefore have included a slightly modified version of
this potential that avoids this problem by attaching the midplane of slab n = 0 to the center of
mass of the rotation group, yielding slabs that move with the rotation group. This is achieved by
subtracting the center of mass xc of the group from the positions,

x̃i = xi − xc , and ỹ0
i = y0

i − y0
c , (6.46)

such that

V flex-t =
k

2

∑
n

N∑
i=1

wi gn(x̃i)

[
v̂ ×Ω(t)(ỹ0

i − ỹnc )

‖v̂ ×Ω(t)(ỹ0
i − ỹnc )‖

· (x̃i − x̃nc )

]2

. (6.47)

To simplify the force derivation, and for efficiency reasons, we here assume xc to be constant, and
thus ∂xc/∂x = ∂xc/∂y = ∂xc/∂z = 0. The resulting force error is small (of order O(1/N) or
O(mj/M) if mass-weighting is applied) and can therefore be tolerated. With this assumption, the
forces F flex-t have the same form as eqn. 6.45.
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Flexible Axis 2 Alternative Potential

In this second variant, slab segmentation is applied to V rm2 (eqn. 6.32), resulting in a flexible axis
potential without radial force contributions (Fig. 6.4C),

V flex2 =
k

2

N∑
i=1

∑
n

wi gn(xi)

[
(v̂ × (xi − xnc )) ·Ω(t)(y0

i − ync )
]2

‖v̂ × (xi − xnc )‖2 + ε′
. (6.48)

With

rni := Ω(t)(y0
i − ync ) (6.49)

sni :=
v̂ × (xi − xnc )

‖v̂ × (xi − xnc )‖
≡ ψi v̂ × (xi − xnc ) (6.50)

ψ∗i :=
1

‖v̂ × (xi − xnc )‖2 + ε′
(6.51)

Wn
j :=

gn(xj)mj∑
h gn(xh)mh

(6.52)

Sn :=
N∑
i=1

wi gn(xi) (sni · rni )

[
ψ∗i
ψi
rni −

ψ∗2i
ψ3
i

(sni · rni ) sni

]
(6.53)

the force on atom j reads

F flex2
j = −k

{∑
n

wj gn(xj) (snj · rnj )

[
ψ∗j
ψj
rnj −

ψ∗2j
ψ3
j

(snj · rnj ) snj

]}
× v̂

+k

{∑
n

Wn
j S

n

}
× v̂ − k

{∑
n

Wn
j

βn(xj)

σ2

1

ψj
snj · Sn

}
v̂

+
k

2

{∑
n

wj gn(xj)
βn(xj)

σ2

ψ∗j
ψ2
j

(snj · rnj )2

}
v̂. (6.54)

Applying transformation (6.46) yields a “translation-tolerant” version of the flexible 2 potential,
V flex2-t. Again, assuming that ∂xc/∂x, ∂xc/∂y, ∂xc/∂z are small, the resulting equations for
V flex2-t and F flex2-t are similar to those of V flex2 and F flex2.

6.5.3 Usage

To apply enforced rotation, the particles i that are to be subjected to one of the rotation potentials
are defined via index groups rot_group0, rot_group1, etc., in the .mdp input file. The
reference positions y0

i are read from a special .trr file provided to grompp. If no such file is
found, xi(t = 0) are used as reference positions and written to .trr such that they can be used for
subsequent setups. All parameters of the potentials such as k, ε′, etc. (Table 6.1) are provided as
.mdp parameters; rot_type selects the type of the potential. The option rot_massw allows
to choose whether or not to use mass-weighted averaging. For the flexible potentials, a cutoff
value gmin

n (typically gmin
n = 0.001) makes shure that only significant contributions to V and F

are evaluated, i.e. terms with gn(x) < gmin
n are omitted. Table 6.2 summarizes observables that

are written to additional output files and which are described below.
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Table 6.1: Parameters used by the various rotation potentials. x’s indicate which parameter is
actually used for a given potential.

parameter k v̂ u ω ε′ ∆x gmin
n

.mdp input variable name k vec pivot rate eps slab dist min gauss
unit kJ

mol·nm2 - nm ◦/ps nm2 nm -

fixed axis potentials: eqn.
isotropic V iso (6.9) x x x x - - -
— pivot-free V iso-pf (6.12) x x - x - - -
parallel motion V pm (6.16) x x x x - - -
— pivot-free V pm-pf (6.20) x x - x - - -
radial motion V rm (6.21) x x x x - - -
— pivot-free V rm-pf (6.26) x x - x - - -
radial motion 2 V rm2 (6.27) x x x x x - -
— pivot-free V rm2-pf (6.32) x x - x x - -
flexible axis potentials: eqn.
flexible V flex (6.42) x x - x - x x
— transl. tol. V flex-t (6.47) x x - x - x x
flexible 2 V flex2 (6.48) x x - x x x x
— transl. tol. V flex2-t - x x - x x x x

Table 6.2: Quantities recorded in output files during enforced rotation simulations. All slab-wise
data is written every nstsout steps, other rotation data every nstrout steps.

quantity unit equation output file fixed flexible
V (t) kJ/mol see 6.1 rotation x x
θref(t) degrees θref(t) = ωt rotation x x
θav(t) degrees (6.55) rotation x -
θfit(t), θfit(t, n) degrees (6.57) rotangles - x
y0(n), x0(t, n) nm (6.40, 6.41) rotslabs - x
τ(t) kJ/mol (6.58) rotation x -
τ(t, n) kJ/mol (6.58) rottorque - x
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Angle of Rotation Groups: Fixed Axis

For fixed axis rotation, the average angle θav(t) of the group relative to the reference group is
determined via the distance-weighted angular deviation of all rotation group atoms from their
reference positions,

θav =
N∑
i=1

ri θi

/
N∑
i=1

ri . (6.55)

Here, ri is the distance of the reference position to the rotation axis, and the difference angles θi
are determined from the atomic positions, projected onto a plane perpendicular to the rotation axis
through pivot point u (see eqn. 6.15 for the definition of ⊥),

cos θi =
(yi − u)⊥ · (xi − u)⊥

‖(yi − u)⊥ · (xi − u)⊥‖
. (6.56)

The sign of θav is chosen such that θav > 0 if the actual structure rotates ahead of the reference.

Angle of Rotation Groups: Flexible Axis

For flexible axis rotation, two outputs are provided, the angle of the entire rotation group, and
separate angles for the segments in the slabs. The angle of the entire rotation group is determined
by an RMSD fit of xi to the reference positions y0

i at t = 0, yielding θfit as the angle by which
the reference has to be rotated around v̂ for the optimal fit,

RMSD(xi, Ω(θfit)y
0
i )

!
= min . (6.57)

To determine the local angle for each slab n, both reference and actual positions are weighted with
the Gaussian function of slab n, and θfit(t, n) is calculated as in eqn. 6.57) from the Gaussian-
weighted positions.

For all angles, the .mdp input option rot_fit_method controls whether a normal RMSD fit
is performed or whether for the fit each position xi is put at the same distance to the rotation axis
as its reference counterpart y0

i . In the latter case, the RMSD measures only angular differences,
not radial ones.

Angle Determination by Searching the Energy Minimum

Alternatively, for rot_fit_method = potential, the angle of the rotation group is deter-
mined as the angle for which the rotation potential energy is minimal. Therefore, the used rotation
potential is additionally evaluated for a set of angles around the current reference angle. In this
case, the rotangles.log output file contains the values of the rotation potential at the chosen
set of angles, while rotation.xvg lists the angle with minimal potential energy.

Torque

The torque τ (t) exerted by the rotation potential is calculated for fixed axis rotation via

τ (t) =
N∑
i=1

ri(t)× f⊥i (t), (6.58)
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where ri(t) is the distance vector from the rotation axis to xi(t) and f⊥i (t) is the force component
perpendicular to ri(t) and v̂. For flexible axis rotation, torques τn are calculated for each slab
using the local rotation axis of the slab and the Gaussian-weighted positions.

6.6 Computational Electrophysiology

The Computational Electrophysiology (CompEL) protocol [135] allows the simulation of ion flux
through membrane channels, driven by transmembrane potentials or ion concentration gradients.
Just as in real cells, CompEL establishes transmembrane potentials by sustaining a small imbal-
ance of charges ∆q across the membrane, which gives rise to a potential difference ∆U according
to the membrane capacitance:

∆U = ∆q/Cmembrane (6.59)

The transmembrane electric field and concentration gradients are controlled by .mdp options,
which allow the user to set reference counts for the ions on either side of the membrane. If a dif-
ference between the actual and the reference numbers persists over a certain time span, specified
by the user, a number of ion/water pairs are exchanged between the compartments until the refer-
ence numbers are restored. Alongside the calculation of channel conductance and ion selectivity,
CompEL simulations also enable determination of the channel reversal potential, an important
characteristic obtained in electrophysiology experiments.

In a CompEL setup, the simulation system is divided into two compartments A and B with inde-
pendent ion concentrations. This is best achieved by using double bilayer systems with a copy (or
copies) of the channel/pore of interest in each bilayer (Fig. 6.6 A, B). If the channel axes point in
the same direction, channel flux is observed simultaneously at positive and negative potentials in
this way, which is for instance important for studying channel rectification.

The potential difference ∆U across the membrane is easily calculated with the gmx potential
utility. By this, the potential drop along z or the pore axis is exactly known in each time interval
of the simulation (Fig. 6.6 C). Type and number of ions ni of charge qi, traversing the channel in
the simulation, are written to the swapions.xvg output file, from which the average channel
conductance G in each interval ∆t is determined by:

G =

∑
i niqi

∆t∆U
. (6.60)

The ion selectivity is calculated as the number flux ratio of different species. Best results are
obtained by averaging these values over several overlapping time intervals.

The calculation of reversal potentials is best achieved using a small set of simulations in which
a given transmembrane concentration gradient is complemented with small ion imbalances of
varying magnitude. For example, if one compartment contains 1 M salt and the other 0.1 M, and
given charge neutrality otherwise, a set of simulations with ∆q = 0 e, ∆q = 2 e, ∆q = 4 e could
be used. Fitting a straight line through the current-voltage relationship of all obtained I-U pairs
near zero current will then yield Urev.

6.6.1 Usage

The following .mdp options control the CompEL protocol:
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Figure 6.6: Typical double-membrane setup for CompEL simulations (A, B). Plot (C) shows the
potential difference ∆U resulting from the selected charge imbalance ∆qref between the com-
partments.

swapcoords = Z ; Swap positions: no, X, Y, Z
swap_frequency = 100 ; Swap attempt frequency

Choose Z if your membrane is in the xy-plane (Fig. 6.6 A, B). Ions will be exchanged between
compartments depending on their z-positions alone. swap_frequency determines how often
a swap attempt will be made. This step requires that the positions of the ions, solvent, and swap
groups are communicated between the parallel ranks, so if chosen too small it can decrease the
simulation performance.

split_group0 = channel0 ; Defines compartment boundary
split_group1 = channel1 ; Defines other compartment boundary
massw_split0 = no ; use mass-weighted center?
massw_split1 = no

split_group0 and split_group1 are two index groups that define the boundaries between
the two compartments, which are usually the centers of the channels. If massw_split0 or
massw_split1 are set to yes, the center of mass of each index group is used as boundary, here
in z-direction. Otherwise, the geometrical centers will be used (× in Fig. 6.6 A). If, such as here,
a membrane channel is selected as split group, the center of the channel will define the dividing
plane between the compartments (dashed horizontal line in the figure). All index groups must be
defined in the index file.

swap_group = NA+_CL- ; Ions to be included in exchange
solvent_group = SOL ; Group name of solvent molecules
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cyl0_r = 5.0 ; Split cylinder 0: pore radius (nm)
cyl0_up = 0.75 ; Split cylinder 0 upper extension (nm)
cyl0_down = 0.75 ; Split cylinder 0 lower extension (nm)
cyl1_r = 5.0 ; same for other channel
cyl1_up = 0.75
cyl1_down = 0.75
coupl_steps = 10 ; Average over these many swap steps
threshold = 1 ; Do not swap if < threshold

swap_group identifies the index group of ions that should be involved in the flux and exchange
cycles, solvent_group defines the solvent group with which they are swapped. The cylinder
options only influence the counting of ions, i.e., ions will be counted as having traveled through
either channel 0 or channel 1 according to the definition of (channel) cylinder radius, upper and
lower extension, relative to the location of the respective split group. This will not affect the
actual flux or exchange, but will provide you with the ion permeation numbers across each of the
channels. Note that an ion can only be counted as passing through a particular channel if it is
detected within the defined split cylinder in a swap step. If swap_frequency is chosen too
high, a particular ion may be detected in compartment A in one swap step, and in compartment B
in the following swap step, so it will be unclear through which of the channels it has passed.

coupl_steps sets the number of swap attempt steps. A discrepancy between actual and refer-
ence ion numbers in each compartment must persist over this many attempts before an actual ex-
change takes place. If coupl_steps is set to 1, then the momentary ion distribution determines
whether ions are exchanged. coupl_steps > 1 will use the time-average of ion distributions
over the selected number of attempt steps instead. This can be useful, for example, when ions dif-
fuse near compartment boundaries, which would lead to numerous unproductive ion exchanges.
A threshold of 1 means that a swap is performed if the average ion count in a compartment
differs by at least 1 from the requested values. Higher thresholds will lead to toleration of larger
differences. Ions are exchanged until the requested number ± the threshold is reached.

anionsA = -1 ; Reference count of anions in A
cationsA = -1 ; ... of cations in A
anionsB = -1 ; ... of anions in B
cationsB = -1 ; ... of cations in B

These options set the requested number of anions and cations for each of the two compartments.
A number of -1 means fix the numbers found in time step 0. Note that these numbers need to add
up to the total number of ions in the swap group.

Note that a double-layered system for CompEL simulations can be easily prepared by duplicating
an existing membrane/channel MD system in the direction of the membrane normal (typically
z) with gmx editconf -translate 0 0 <l_z>, where l_z is the box length in that
direction. If you have already defined index groups for the channel for the single-layered system,
gmx make_ndx -n index.ndx -twin will provide you with the groups for the double-
layered system.

To suppress large fluctuations of the membranes along the swap direction, it may be useful to
apply a harmonic potential (acting only in the swap dimension) between each of the two channel
and/or bilayer centers using umbrella pulling (see section 6.4).
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Multimeric channels

If a split group consists of more than one molecule, the correct PBC image of all molecules with
respect to each other has to be chosen such that the channel center can be correctly determined.
GROMACS assumes that the starting structure in the .tpr file has the correct PBC representation.
Set the following environment variable to check whether that is the case:

• GMX_COMPELDUMP: output the starting structure after it has been made whole to .pdb
file.

6.7 Calculating a PMF using the free-energy code

The free-energy coupling-parameter approach (see sec. 3.12) provides several ways to calculate
potentials of mean force. A potential of mean force between two atoms can be calculated by
connecting them with a harmonic potential or a constraint. For this purpose there are special
potentials that avoid the generation of extra exclusions, see sec. 5.4. When the position of the
minimum or the constraint length is 1 nm more in state B than in state A, the restraint or constraint
force is given by ∂H/∂λ. The distance between the atoms can be changed as a function of λ and
time by setting delta-lambda in the .mdp file. The results should be identical (although not
numerically due to the different implementations) to the results of the pull code with umbrella
sampling and constraint pulling. Unlike the pull code, the free energy code can also handle atoms
that are connected by constraints.

Potentials of mean force can also be calculated using position restraints. With position restraints,
atoms can be linked to a position in space with a harmonic potential (see 4.3.1). These positions
can be made a function of the coupling parameter λ. The positions for the A and the B states are
supplied to grompp with the -r and -rb options, respectively. One could use this approach to
do targeted MD; note that we do not encourage the use of targeted MD for proteins. A protein
can be forced from one conformation to another by using these conformations as position restraint
coordinates for state A and B. One can then slowly change λ from 0 to 1. The main drawback of
this approach is that the conformational freedom of the protein is severely limited by the position
restraints, independent of the change from state A to B. Also, the protein is forced from state A to
B in an almost straight line, whereas the real pathway might be very different. An example of a
more fruitful application is a solid system or a liquid confined between walls where one wants to
measure the force required to change the separation between the boundaries or walls. Because the
boundaries (or walls) already need to be fixed, the position restraints do not limit the system in its
sampling.

6.8 Removing fastest degrees of freedom

The maximum time step in MD simulations is limited by the smallest oscillation period that can
be found in the simulated system. Bond-stretching vibrations are in their quantum-mechanical
ground state and are therefore better represented by a constraint instead of a harmonic potential.

For the remaining degrees of freedom, the shortest oscillation period (as measured from a simu-
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lation) is 13 fs for bond-angle vibrations involving hydrogen atoms. Taking as a guideline that
with a Verlet (leap-frog) integration scheme a minimum of 5 numerical integration steps should be
performed per period of a harmonic oscillation in order to integrate it with reasonable accuracy,
the maximum time step will be about 3 fs. Disregarding these very fast oscillations of period 13 fs,
the next shortest periods are around 20 fs, which will allow a maximum time step of about 4 fs.

Removing the bond-angle degrees of freedom from hydrogen atoms can best be done by defining
them as virtual interaction sites instead of normal atoms. Whereas a normal atom is connected
to the molecule with bonds, angles and dihedrals, a virtual site’s position is calculated from the
position of three nearby heavy atoms in a predefined manner (see also sec. 4.7). For the hydrogens
in water and in hydroxyl, sulfhydryl, or amine groups, no degrees of freedom can be removed,
because rotational freedom should be preserved. The only other option available to slow down
these motions is to increase the mass of the hydrogen atoms at the expense of the mass of the
connected heavy atom. This will increase the moment of inertia of the water molecules and the
hydroxyl, sulfhydryl, or amine groups, without affecting the equilibrium properties of the system
and without affecting the dynamical properties too much. These constructions will shortly be
described in sec. 6.8.1 and have previously been described in full detail [136].

Using both virtual sites and modified masses, the next bottleneck is likely to be formed by the
improper dihedrals (which are used to preserve planarity or chirality of molecular groups) and the
peptide dihedrals. The peptide dihedral cannot be changed without affecting the physical behavior
of the protein. The improper dihedrals that preserve planarity mostly deal with aromatic residues.
Bonds, angles, and dihedrals in these residues can also be replaced with somewhat elaborate virtual
site constructions.

All modifications described in this section can be performed using the GROMACS topology build-
ing tool pdb2gmx. Separate options exist to increase hydrogen masses, virtualize all hydrogen
atoms, or also virtualize all aromatic residues. Note that when all hydrogen atoms are virtual-
ized, those inside the aromatic residues will be virtualized as well, i.e. hydrogens in the aromatic
residues are treated differently depending on the treatment of the aromatic residues.

Parameters for the virtual site constructions for the hydrogen atoms are inferred from the force-
field parameters (vis. bond lengths and angles) directly by grompp while processing the topology
file. The constructions for the aromatic residues are based on the bond lengths and angles for the
geometry as described in the force fields, but these parameters are hard-coded into pdb2gmx due
to the complex nature of the construction needed for a whole aromatic group.

6.8.1 Hydrogen bond-angle vibrations

Construction of virtual sites

The goal of defining hydrogen atoms as virtual sites is to remove all high-frequency degrees of
freedom from them. In some cases, not all degrees of freedom of a hydrogen atom should be
removed, e.g. in the case of hydroxyl or amine groups the rotational freedom of the hydrogen
atom(s) should be preserved. Care should be taken that no unwanted correlations are introduced
by the construction of virtual sites, e.g. bond-angle vibration between the constructing atoms could
translate into hydrogen bond-length vibration. Additionally, since virtual sites are by definition
massless, in order to preserve total system mass, the mass of each hydrogen atom that is treated as



174 Chapter 6. Special Topics

D

d

α

d

BA C

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���

���
���
���

������

���
���
���

���
���
���

����
����
����

����
����
����

Figure 6.7: The different types of virtual site constructions used for hydrogen atoms. The atoms
used in the construction of the virtual site(s) are depicted as black circles, virtual sites as gray
ones. Hydrogens are smaller than heavy atoms. A: fixed bond angle, note that here the hydrogen
is not a virtual site; B: in the plane of three atoms, with fixed distance; C: in the plane of three
atoms, with fixed angle and distance; D: construction for amine groups (-NH2 or -NH+

3 ), see text
for details.

virtual site should be added to the bonded heavy atom.

Taking into account these considerations, the hydrogen atoms in a protein naturally fall into several
categories, each requiring a different approach (see also Fig. 6.7).

• hydroxyl (-OH) or sulfhydryl (-SH) hydrogen: The only internal degree of freedom in a
hydroxyl group that can be constrained is the bending of the C-O-H angle. This angle is
fixed by defining an additional bond of appropriate length, see Fig. 6.7A. Doing so removes
the high-frequency angle bending, but leaves the dihedral rotational freedom. The same
goes for a sulfhydryl group. Note that in these cases the hydrogen is not treated as a virtual
site.

• single amine or amide (-NH-) and aromatic hydrogens (-CH-): The position of these hy-
drogens cannot be constructed from a linear combination of bond vectors, because of the
flexibility of the angle between the heavy atoms. Instead, the hydrogen atom is positioned
at a fixed distance from the bonded heavy atom on a line going through the bonded heavy
atom and a point on the line through both second bonded atoms, see Fig. 6.7B.

• planar amine (-NH2) hydrogens: The method used for the single amide hydrogen is not well
suited for planar amine groups, because no suitable two heavy atoms can be found to define
the direction of the hydrogen atoms. Instead, the hydrogen is constructed at a fixed distance
from the nitrogen atom, with a fixed angle to the carbon atom, in the plane defined by one
of the other heavy atoms, see Fig. 6.7C.

• amine group (umbrella -NH2 or -NH+
3 ) hydrogens: Amine hydrogens with rotational free-

dom cannot be constructed as virtual sites from the heavy atoms they are connected to, since
this would result in loss of the rotational freedom of the amine group. To preserve the rota-
tional freedom while removing the hydrogen bond-angle degrees of freedom, two “dummy
masses” are constructed with the same total mass, moment of inertia (for rotation around
the C-N bond) and center of mass as the amine group. These dummy masses have no in-
teraction with any other atom, except for the fact that they are connected to the carbon and
to each other, resulting in a rigid triangle. From these three particles, the positions of the
nitrogen and hydrogen atoms are constructed as linear combinations of the two carbon-mass
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Figure 6.8: The different types of virtual site constructions used for aromatic residues. The atoms
used in the construction of the virtual site(s) are depicted as black circles, virtual sites as gray ones.
Hydrogens are smaller than heavy atoms. A: phenylalanine; B: tyrosine (note that the hydroxyl
hydrogen is not a virtual site); C: tryptophan; D: histidine.

vectors and their outer product, resulting in an amine group with rotational freedom intact,
but without other internal degrees of freedom. See Fig. 6.7D.

6.8.2 Out-of-plane vibrations in aromatic groups

The planar arrangements in the side chains of the aromatic residues lends itself perfectly to a
virtual-site construction, giving a perfectly planar group without the inherently unstable con-
straints that are necessary to keep normal atoms in a plane. The basic approach is to define three
atoms or dummy masses with constraints between them to fix the geometry and create the rest of
the atoms as simple virtual sites type (see sec. 4.7) from these three. Each of the aromatic residues
require a different approach:

• Phenylalanine: Cγ , Cε1, and Cε2 are kept as normal atoms, but with each a mass of one
third the total mass of the phenyl group. See Fig. 6.7A.

• Tyrosine: The ring is treated identically to the phenylalanine ring. Additionally, constraints
are defined between Cε1, Cε2, and Oη. The original improper dihedral angles will keep both
triangles (one for the ring and one with Oη) in a plane, but due to the larger moments of
inertia this construction will be much more stable. The bond-angle in the hydroxyl group
will be constrained by a constraint between Cγ and Hη. Note that the hydrogen is not treated
as a virtual site. See Fig. 6.7B.

• Tryptophan: Cβ is kept as a normal atom and two dummy masses are created at the center
of mass of each of the rings, each with a mass equal to the total mass of the respective ring
(Cδ2 and Cε2 are each counted half for each ring). This keeps the overall center of mass and
the moment of inertia almost (but not quite) equal to what it was. See Fig. 6.7C.

• Histidine: Cγ , Cε1 and Nε2 are kept as normal atoms, but with masses redistributed such
that the center of mass of the ring is preserved. See Fig. 6.7D.
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6.9 Viscosity calculation

The shear viscosity is a property of liquids that can be determined easily by experiment. It is useful
for parameterizing a force field because it is a kinetic property, while most other properties which
are used for parameterization are thermodynamic. The viscosity is also an important property,
since it influences the rates of conformational changes of molecules solvated in the liquid.

The viscosity can be calculated from an equilibrium simulation using an Einstein relation:

η =
1

2

V

kBT
lim
t→∞

d
dt

〈(∫ t0+t

t0
Pxz(t

′)dt′
)2
〉
t0

(6.61)

This can be done with g_energy. This method converges very slowly [137], and as such a
nanosecond simulation might not be long enough for an accurate determination of the viscosity.
The result is very dependent on the treatment of the electrostatics. Using a (short) cut-off results
in large noise on the off-diagonal pressure elements, which can increase the calculated viscosity
by an order of magnitude.

GROMACS also has a non-equilibrium method for determining the viscosity [137]. This makes
use of the fact that energy, which is fed into system by external forces, is dissipated through viscous
friction. The generated heat is removed by coupling to a heat bath. For a Newtonian liquid adding
a small force will result in a velocity gradient according to the following equation:

ax(z) +
η

ρ

∂2vx(z)

∂z2
= 0 (6.62)

Here we have applied an acceleration ax(z) in the x-direction, which is a function of the z-
coordinate. In GROMACS the acceleration profile is:

ax(z) = A cos

(
2πz

lz

)
(6.63)

where lz is the height of the box. The generated velocity profile is:

vx(z) = V cos

(
2πz

lz

)
(6.64)

V = A
ρ

η

(
lz
2π

)2

(6.65)

The viscosity can be calculated from A and V :

η =
A

V
ρ

(
lz
2π

)2

(6.66)

In the simulation V is defined as:

V =

N∑
i=1

mivi,x2 cos

(
2πz

lz

)
N∑
i=1

mi

(6.67)
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The generated velocity profile is not coupled to the heat bath. Moreover, the velocity profile is
excluded from the kinetic energy. One would like V to be as large as possible to get good statistics.
However, the shear rate should not be so high that the system gets too far from equilibrium. The
maximum shear rate occurs where the cosine is zero, the rate being:

shmax = max
z

∣∣∣∣∂vx(z)

∂z

∣∣∣∣ = A
ρ

η

lz
2π

(6.68)

For a simulation with: η = 10−3 [kg m−1 s−1], ρ = 103 [kg m−3] and lz = 2π [nm], shmax =
1 [ps nm−1] A. This shear rate should be smaller than one over the longest correlation time in
the system. For most liquids, this will be the rotation correlation time, which is around 10 ps. In
this case, A should be smaller than 0.1 [nm ps−2]. When the shear rate is too high, the observed
viscosity will be too low. Because V is proportional to the square of the box height, the optimal
box is elongated in the z-direction. In general, a simulation length of 100 ps is enough to obtain
an accurate value for the viscosity.

The heat generated by the viscous friction is removed by coupling to a heat bath. Because this
coupling is not instantaneous the real temperature of the liquid will be slightly lower than the
observed temperature. Berendsen derived this temperature shift [30], which can be written in
terms of the shear rate as:

Ts =
η τ

2ρCv
sh2

max (6.69)

where τ is the coupling time for the Berendsen thermostat and Cv is the heat capacity. Using
the values of the example above, τ = 10−13 [s] and Cv = 2 · 103 [J kg−1 K−1], we get: Ts =
25 [K ps−2] sh2

max. When we want the shear rate to be smaller than 1/10 [ps−1], Ts is smaller than
0.25 [K], which is negligible.

Note that the system has to build up the velocity profile when starting from an equilibrium state.
This build-up time is of the order of the correlation time of the liquid.

Two quantities are written to the energy file, along with their averages and fluctuations: V and
1/η, as obtained from (6.66).

6.10 Tabulated interaction functions

6.10.1 Cubic splines for potentials

In some of the inner loops of GROMACS, look-up tables are used for computation of potential
and forces. The tables are interpolated using a cubic spline algorithm. There are separate tables
for electrostatic, dispersion, and repulsion interactions, but for the sake of caching performance
these have been combined into a single array. The cubic spline interpolation for xi ≤ x < xi+1

looks like this:
Vs(x) = A0 +A1 ε+A2 ε

2 +A3 ε
3 (6.70)

where the table spacing h and fraction ε are given by:

h = xi+1 − xi (6.71)

ε = (x− xi)/h (6.72)
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so that 0 ≤ ε < 1. From this, we can calculate the derivative in order to determine the forces:

−V ′s (x) = −dVs(x)

dε

dε

dx
= −(A1 + 2A2 ε+ 3A3 ε

2)/h (6.73)

The four coefficients are determined from the four conditions that Vs and−V ′s at both ends of each
interval should match the exact potential V and force −V ′. This results in the following errors for
each interval:

|Vs − V |max = V ′′′′
h4

384
+O(h5) (6.74)

|V ′s − V ′|max = V ′′′′
h3

72
√

3
+O(h4) (6.75)

|V ′′s − V ′′|max = V ′′′′
h2

12
+O(h3) (6.76)

V and V’ are continuous, while V” is the first discontinuous derivative. The number of points
per nanometer is 500 and 2000 for mixed- and double-precision versions of GROMACS, respec-
tively. This means that the errors in the potential and force will usually be smaller than the mixed
precision accuracy.

GROMACS stores A0, A1, A2 and A3. The force routines get a table with these four parameters
and a scaling factor s that is equal to the number of points per nm. (Note that h is s−1). The
algorithm goes a little something like this:

1. Calculate distance vector (rij) and distance rij

2. Multiply rij by s and truncate to an integer value n0 to get a table index

3. Calculate fractional component (ε = srij − n0) and ε2

4. Do the interpolation to calculate the potential V and the scalar force f

5. Calculate the vector force F by multiplying f with rij

Note that table look-up is significantly slower than computation of the most simple Lennard-Jones
and Coulomb interaction. However, it is much faster than the shifted Coulomb function used in
conjunction with the PPPM method. Finally, it is much easier to modify a table for the potential
(and get a graphical representation of it) than to modify the inner loops of the MD program.

6.10.2 User-specified potential functions

You can also use your own s without editing the GROMACS code. The potential function should
be according to the following equation

V (rij) =
qiqj
4πε0

f(rij) + C6 g(rij) + C12 h(rij) (6.77)

where f , g, and h are user defined functions. Note that if g(r) represents a normal dispersion
interaction, g(r) should be < 0. C6, C12 and the charges are read from the topology. Also note
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that combination rules are only supported for Lennard-Jones and Buckingham, and that your tables
should match the parameters in the binary topology.

When you add the following lines in your .mdp file:

rlist = 1.0
coulombtype = User
rcoulomb = 1.0
vdwtype = User
rvdw = 1.0

mdrunwill read a single non-bonded table file, or multiple when energygrp-table is set (see
below). The name of the file(s) can be set with the mdrun option -table. The table file should
contain seven columns of table look-up data in the order: x, f(x), −f ′(x), g(x), −g′(x), h(x),
−h′(x). The x should run from 0 to rc + 1 (the value of table_extension can be changed
in the .mdp file). You can choose the spacing you like; for the standard tables GROMACS uses a
spacing of 0.002 and 0.0005 nm when you run in mixed and double precision, respectively. In this
context, rc denotes the maximum of the two cut-offs rvdw and rcoulomb (see above). These
variables need not be the same (and need not be 1.0 either). Some functions used for potentials
contain a singularity at x = 0, but since atoms are normally not closer to each other than 0.1 nm,
the function value at x = 0 is not important. Finally, it is also possible to combine a standard
Coulomb with a modified LJ potential (or vice versa). One then specifies e.g. coulombtype =
Cut-off or coulombtype = PME, combined with vdwtype = User. The table file must
always contain the 7 columns however, and meaningful data (i.e. not zeroes) must be entered in
all columns. A number of pre-built table files can be found in the GMXLIB directory for 6-8, 6-9,
6-10, 6-11, and 6-12 Lennard-Jones potentials combined with a normal Coulomb.

If you want to have different functional forms between different groups of atoms, this can be set
through energy groups. Different tables can be used for non-bonded interactions between different
energy groups pairs through the .mdp option energygrp-table (see sec. 7.3). Atoms that
should interact with a different potential should be put into different energy groups. Between
group pairs which are not listed in energygrp-table, the normal user tables will be used.
This makes it easy to use a different functional form between a few types of atoms.

6.11 Mixed Quantum-Classical simulation techniques

In a molecular mechanics (MM) force field, the influence of electrons is expressed by empirical
parameters that are assigned on the basis of experimental data, or on the basis of results from
high-level quantum chemistry calculations. These are valid for the ground state of a given covalent
structure, and the MM approximation is usually sufficiently accurate for ground-state processes
in which the overall connectivity between the atoms in the system remains unchanged. However,
for processes in which the connectivity does change, such as chemical reactions, or processes that
involve multiple electronic states, such as photochemical conversions, electrons can no longer be
ignored, and a quantum mechanical description is required for at least those parts of the system in
which the reaction takes place.

One approach to the simulation of chemical reactions in solution, or in enzymes, is to use a com-
bination of quantum mechanics (QM) and molecular mechanics (MM). The reacting parts of the
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system are treated quantum mechanically, with the remainder being modeled using the force field.
The current version of GROMACS provides interfaces to several popular Quantum Chemistry
packages (MOPAC [138], GAMESS-UK [139], Gaussian [140] and CPMD [141]).

GROMACS interactions between the two subsystems are either handled as described by Field et
al. [142] or within the ONIOM approach by Morokuma and coworkers [143, 144].

6.11.1 Overview

Two approaches for describing the interactions between the QM and MM subsystems are sup-
ported in this version:

1. Electronic Embedding The electrostatic interactions between the electrons of the QM re-
gion and the MM atoms and between the QM nuclei and the MM atoms are included in the
Hamiltonian for the QM subsystem:

HQM/MM = HQM
e −

n∑
i

M∑
J

e2QJ
4πε0riJ

+
N∑
A

M∑
J

e2ZAQJ
eπε0RAJ

, (6.78)

where n and N are the number of electrons and nuclei in the QM region, respectively,
and M is the number of charged MM atoms. The first term on the right hand side is the
original electronic Hamiltonian of an isolated QM system. The first of the double sums is
the total electrostatic interaction between the QM electrons and the MM atoms. The total
electrostatic interaction of the QM nuclei with the MM atoms is given by the second double
sum. Bonded interactions between QM and MM atoms are described at the MM level by the
appropriate force-field terms. Chemical bonds that connect the two subsystems are capped
by a hydrogen atom to complete the valence of the QM region. The force on this atom,
which is present in the QM region only, is distributed over the two atoms of the bond. The
cap atom is usually referred to as a link atom.

2. ONIOM In the ONIOM approach, the energy and gradients are first evaluated for the iso-
lated QM subsystem at the desired level of ab initio theory. Subsequently, the energy and
gradients of the total system, including the QM region, are computed using the molecular
mechanics force field and added to the energy and gradients calculated for the isolated QM
subsystem. Finally, in order to correct for counting the interactions inside the QM region
twice, a molecular mechanics calculation is performed on the isolated QM subsystem and
the energy and gradients are subtracted. This leads to the following expression for the total
QM/MM energy (and gradients likewise):

Etot = EQMI + EMM
I+II − EMM

I , (6.79)

where the subscripts I and II refer to the QM and MM subsystems, respectively. The su-
perscripts indicate at what level of theory the energies are computed. The ONIOM scheme
has the advantage that it is not restricted to a two-layer QM/MM description, but can easily
handle more than two layers, with each layer described at a different level of theory.
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6.11.2 Usage

To make use of the QM/MM functionality in GROMACS, one needs to:

1. introduce link atoms at the QM/MM boundary, if needed;

2. specify which atoms are to be treated at a QM level;

3. specify the QM level, basis set, type of QM/MM interface and so on.

Adding link atoms

At the bond that connects the QM and MM subsystems, a link atoms is introduced. In GROMACS
the link atom has special atomtype, called LA. This atomtype is treated as a hydrogen atom in the
QM calculation, and as a virtual site in the force-field calculation. The link atoms, if any, are part
of the system, but have no interaction with any other atom, except that the QM force working on
it is distributed over the two atoms of the bond. In the topology, the link atom (LA), therefore, is
defined as a virtual site atom:

[ virtual_sites2 ]
LA QMatom MMatom 1 0.65

See sec. 5.2.2 for more details on how virtual sites are treated. The link atom is replaced at every
step of the simulation.

In addition, the bond itself is replaced by a constraint:

[ constraints ]
QMatom MMatom 2 0.153

Note that, because in our system the QM/MM bond is a carbon-carbon bond (0.153 nm), we use
a constraint length of 0.153 nm, and dummy position of 0.65. The latter is the ratio between the
ideal C-H bond length and the ideal C-C bond length. With this ratio, the link atom is always
0.1 nm away from the QMatom, consistent with the carbon-hydrogen bond length. If the QM and
MM subsystems are connected by a different kind of bond, a different constraint and a different
dummy position, appropriate for that bond type, are required.

Specifying the QM atoms

Atoms that should be treated at a QM level of theory, including the link atoms, are added to the
index file. In addition, the chemical bonds between the atoms in the QM region are to be defined
as connect bonds (bond type 5) in the topology file:

[ bonds ]
QMatom1 QMatom2 5
QMatom2 QMatom3 5
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Specifying the QM/MM simulation parameters

In the .mdp file, the following parameters control a QM/MM simulation.

QMMM = no
If this is set to yes, a QM/MM simulation is requested. Several groups of atoms can be
described at different QM levels separately. These are specified in the QMMM-grps field
separated by spaces. The level of ab initio theory at which the groups are described is
specified by QMmethod and QMbasis Fields. Describing the groups at different levels of
theory is only possible with the ONIOM QM/MM scheme, specified by QMMMscheme.

QMMM-grps =
groups to be described at the QM level

QMMMscheme = normal
Options are normal and ONIOM. This selects the QM/MM interface. normal implies
that the QM subsystem is electronically embedded in the MM subsystem. There can only
be one QMMM-grps that is modeled at the QMmethod and QMbasis level of ab initio
theory. The rest of the system is described at the MM level. The QM and MM subsystems
interact as follows: MM point charges are included in the QM one-electron Hamiltonian
and all Lennard-Jones interactions are described at the MM level. If ONIOM is selected, the
interaction between the subsystem is described using the ONIOM method by Morokuma
and co-workers. There can be more than one QMMM-grps each modeled at a different level
of QM theory (QMmethod and QMbasis).

QMmethod =
Method used to compute the energy and gradients on the QM atoms. Available meth-
ods are AM1, PM3, RHF, UHF, DFT, B3LYP, MP2, CASSCF, MMVB and CPMD. For
CASSCF, the number of electrons and orbitals included in the active space is specified by
CASelectrons and CASorbitals. For CPMD, the plane-wave cut-off is specified by
the planewavecutoff keyword.

QMbasis =
Gaussian basis set used to expand the electronic wave-function. Only Gaussian basis sets
are currently available, i.e. STO-3G, 3-21G, 3-21G*, 3-21+G*, 6-21G, 6-31G, 6-31G*,
6-31+G*, and 6-311G. For CPMD, which uses plane wave expansion rather than atom-
centered basis functions, the planewavecutoff keyword controls the plane wave ex-
pansion.

QMcharge =
The total charge in e of the QMMM-grps. In case there are more than one QMMM-grps, the
total charge of each ONIOM layer needs to be specified separately.

QMmult =
The multiplicity of the QMMM-grps. In case there are more than one QMMM-grps, the
multiplicity of each ONIOM layer needs to be specified separately.
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CASorbitals =
The number of orbitals to be included in the active space when doing a CASSCF computa-
tion.

CASelectrons =
The number of electrons to be included in the active space when doing a CASSCF compu-
tation.

SH = no
If this is set to yes, a QM/MM MD simulation on the excited state-potential energy surface
and enforce a diabatic hop to the ground-state when the system hits the conical intersection
hyperline in the course the simulation. This option only works in combination with the
CASSCF method.

6.11.3 Output

The energies and gradients computed in the QM calculation are added to those computed by GRO-
MACS. In the .edr file there is a section for the total QM energy.

6.11.4 Future developments

Several features are currently under development to increase the accuracy of the QM/MM inter-
face. One useful feature is the use of delocalized MM charges in the QM computations. The most
important benefit of using such smeared-out charges is that the Coulombic potential has a finite
value at interatomic distances. In the point charge representation, the partially-charged MM atoms
close to the QM region tend to “over-polarize” the QM system, which leads to artifacts in the
calculation.

What is needed as well is a transition state optimizer.

6.12 Adaptive Resolution Scheme

The adaptive resolution scheme [145, 146] (AdResS) couples two systems with different reso-
lutions by a force interpolation scheme. In contrast to the mixed Quantum-Classical simulation
techniques of the previous section, the number of high resolution particles is not fixed, but can
vary over the simulation time.

Below we discuss AdResS for a double resolution (atomistic and coarse grained) representation
of the same system. See Fig. 6.9 for illustration. The details of implementation described in this
section were published in [147, 148].

Every molecule needs a well-defined mapping point (usually the center of mass) but any other
linear combination of particle coordinates is also sufficient. In the topology the mapping point
is defined by a virtual site. The forces in the coarse-grained region are functions of the mapping
point positions only. In this implementation molecules are modeled by charge groups or sets of
charge groups, which actually allows one to have multiple mapping points per molecule. This
can be useful for bigger molecules like polymers. In that case one has to also extend the AdResS
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Figure 6.9: A schematic illustration of the AdResS method for water.

description to bonded interactions [149], which will be implemented into GROMACSin one of the
future versions.

The force between two molecules is given by [145] 1:

~Fαβ = wαwβ ~F
ex,mol
αβ + [1− wαwβ] ~F cg,mol

αβ , (6.80)

where α and β label the two molecules and wα, wβ are the adaptive weights of the two molecules.

The first part, which represents the explicit interaction of the molecules, can be written as:

~F ex,mol
αβ =

∑
i∈α

∑
j∈β

~F ex
ij , (6.81)

where ~F ex
ij is the force between the ith atom in αth molecule and the jth atom in the βth molecule,

which is given by an explicit force field. The second part of eqn. 6.80 comes from the coarse-
grained interaction of the molecules. In GROMACSa slightly extended case is implemented:

~Fαβ =
∑
i∈α

∑
j∈β

wiwj ~F
ex
ij + [1− wαwβ] ~F cg,mol

αβ , (6.82)

wherewi andwj are atom-wise weights, which are determined by the adress-site option. For
adress-site being the center of mass, atom i has the weight of the center of mass of its charge
group. The weight wα of molecule α is determined by the position of coarse-grained particle,

1Note that the equation obeys Newton’s third law, which is not the case for other interpolation schemes [150].
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which is constructed as a virtual site from the atomistic particles as specified in the topology.
This extension allows one to perform all kind of AdResS variations, but the common case can be
recovered by using a center of mass virtual site in the topology, adress-site=COM and putting
all atoms (except the virtual site representing the coarse-grained interaction) of a molecule into
one charge group. For big molecules, it is sometimes useful to use an atom-based weight, which
can be either be achieved by setting adress-site=atomperatom or putting every atom into
a separate charge group (the center of mass of a charge group with one atom is the atom itself).

The coarse-grained force field ~F cg is usually derived from the atomistic system by structure-based
coarse-graining (see sec. 4.10.5). To specify which atoms belong to a coarse-grained represen-
tation, energy groups are used. Each coarse-grained interaction has to be associated with a spe-
cific energy group, which is why the virtual sites representing the coarse-grained interactions also
have to be in different charge groups. The energy groups which are treated as coarse-grained
interactions are then listed in adress_cg_grp_names. The most important element of this
interpolation (see eqn. 6.80 and eqn. 6.82) is the adaptive weighting function (for illustration see
Fig. 6.9):

w(x) =


1 : atomistic/explicit region

0 < w < 1 : hybrid region
0 : coarse− grained region

, (6.83)

which has a value between 0 and 1. This definition of w gives a purely explicit force in the explicit
region and a purely coarse-grained force in the coarse-grained region, so essentially eqn. 6.80
only the hybrid region has mixed interactions which would not appear in a standard simulation. In
GROMACS, a cos2-like function is implemented as a weighting function:

w(x) =


0 : x> dex + dhy

cos2
(

π
2dhy

(x− dex)
)

: dex + dhy >x> dex

1 : dex >x

, (6.84)

where dex and dhy are the sizes of the explicit and the hybrid region, respectively. Depending on
the physical interest of the research, other functions could be implemented as long as the following
boundary conditions are fulfilled: The function is 1) continuous, 2) monotonic and 3) has zero
derivatives at the boundaries. Spherical and one-dimensional splitting of the simulation box has
been implemented (adress-type option) and depending on this, the distance x to the center of
the explicit region is calculated as follows:

x =

{
|(~Rα − ~Rct) · ê| : splitting in ê direction

|~Rα − ~Rct| : spherical splitting
, (6.85)

where ~Rct is the center of the explicit zone (defined by adress-reference-coords option).
~Rα is the mapping point of the αth molecule. For the center of mass mapping, it is given by:

Rα =

∑
i∈αmiri∑
i∈αmi

(6.86)

Note that the value of the weighting function depends exclusively on the mapping of the molecule.

The interpolation of forces (see eqn. 6.82) can produce inhomogeneities in the density and affect
the structure of the system in the hybrid region.
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One way of reducing the density inhomogeneities is by the application of the so-called thermo-
dynamic force (TF) [151]. Such a force consists of a space-dependent external field applied in
the hybrid region on the coarse-grained site of each molecule. It can be specified for each of the
species of the system. The TF compensates the pressure profile [152] that emerges under a homo-
geneous density profile. Therefore, it can correct the local density inhomogeneities in the hybrid
region and it also allows the coupling of atomistic and coarse-grained representations which by
construction have different pressures at the target density. The field can be determined by an iter-
ative procedure, which is described in detail in the manual of the VOTCA package [122]. Setting
the adress-interface-correction to thermoforce enables the TF correction and
adress-tf-grp-names defines the energy groups to act on.

6.12.1 Example: Adaptive resolution simulation of water

In this section the set up of an adaptive resolution simulation coupling atomistic SPC [81] water
to its coarse-grained representation will be explained (as used in [152]). The following steps are
required to setup the simulation:

• Perform a reference all-atom simulation

• Create a coarse-grained representation and save it as tabulated interaction function

• Create a hybrid topology for the SPC water

• Modify the atomistic coordinate file to include the coarse grained representation

• Define the geometry of the adaptive simulation in the grompp input file

• Create an index file

The coarse-grained representation of the interaction is stored as tabulated interaction function see
6.10.2. The convention is to use the C(12) columns with the C(12)- coefficient set to 1. All other
columns should be zero. The VOTCA manual has detailed instructions and a tutorial for SPC
water on how to coarse-grain the interaction using various techniques. Here we named the coarse
grained interaction CG, so the corresponding tabulated file is table_CG_CG.xvg. To create the
topology one can start from the atomistic topology file (e.g. share/gromacs/top/oplsaa.ff/spc.itp),
we are assuming rigid water here. In the VOTCA tutorial the file is named hybrid_spc.itp.
The only difference to the atomistic topology is the addition of a coarse-grained virtual site:

[ moleculetype ]
; molname nrexcl
SOL 2

[ atoms ]
; nr type resnr residue atom cgnr charge mass

1 opls_116 1 SOL OW 1 -0.82
2 opls_117 1 SOL HW1 1 0.41
3 opls_117 1 SOL HW2 1 0.41
4 CG 1 SOL CG 2 0

http://code.google.com/p/votca/downloads/list?&q=manual
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[ settles ]
; OW funct doh dhh
1 1 0.1 0.16330

[ exclusions ]
1 2 3
2 1 3
3 1 2

[ virtual_sites3 ]
; Site from funct a d
4 1 2 3 1 0.05595E+00 0.05595E+00

The virtual site type 3 with the specified coefficients places the virtual site in the center of mass
of the molecule (for larger molecules virtual sitesn has to be used). We now need to include our
modified water model in the topology file and define the type CG. In topol.top:

#include "ffoplsaa.itp"

[ atomtypes ]
;name mass charge ptype sigma epsilon
CG 0.00000 0.0000 V 1 0.25

#include "hybrid_spc.itp"

[ system ]
Adaptive water
[ molecules ]
SOL 8507

The σ and ε values correspond to C6 = 1 and C12 = 1 and thus the table file should contain the
coarse-grained interaction in either the C6 or C12 column. In the example the OPLS force field
is used where σ and ε are specified. Note that for force fields which define atomtypes directly in
terms of C6 and C12, one can simply set C6 = 0 and C12 = 1. See section 6.10.2 for more details
on tabulated interactions. Since now the water molecule has a virtual site the coordinate file also
needs to include that.

adaptive water coordinates
34028

1SOL OW 1 0.283 0.886 0.647
1SOL HW1 2 0.359 0.884 0.711
1SOL HW2 3 0.308 0.938 0.566
1SOL CG 4 0.289 0.889 0.646
1SOL OW 5 1.848 0.918 0.082
1SOL HW1 6 1.760 0.930 0.129
1SOL HW2 7 1.921 0.912 0.150
1SOL CG 8 1.847 0.918 0.088
(...)

This file can be created manually or using the VOTCA tool csg_map with the --hybrid
option.
In the grompp input file the AdResS feature needs to be enabled and the geometry defined.
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(...)
; AdResS relevant options
energygrps = CG
energygrp_table = CG CG

; Method for doing Van der Waals
vdw-type = user

adress = yes
adress_type = xsplit
adress_ex_width = 1.5
adress_hy_width = 1.5
adress_interface_correction = off
adress_reference_coords = 8 0 0
adress_cg_grp_names = CG

Here we are defining an energy group CG which consists of the coarse-grained virtual site. As
discussed above, the coarse-grained interaction is usually tabulated. This requires the vdw-type
parameter to be set to user. In the case where multi-component systems are coarse-grained,
an energy group has to be defined for each component. Note that all the energy groups defining
coarse-grained representations have to be listed again in adress_cg_grp_names to distin-
guish them from regular energy groups.
The index file has to be updated to have a group CG which includes all the coarse-grained virtual
sites. This can be done easily using the make_ndx tool of gromacs.

6.13 Using VMD plug-ins for trajectory file I/O

GROMACS tools are able to use the plug-ins found in an existing installation of VMD in order
to read and write trajectory files in formats that are not native to GROMACS. You will be able to
supply an AMBER DCD-format trajectory filename directly to GROMACS tools, for example.

This requires a VMD installation not older than version 1.8, that your system provides the dlopen
function so that programs can determine at run time what plug-ins exist, and that you build shared
libraries when building GROMACS. CMake will find the vmd executable in your path, and from
it, or the environment variable VMDDIR at configuration or run time, locate the plug-ins. Alter-
natively, the VMD_PLUGIN_PATH can be used at run time to specify a path where these plug-ins
can be found. Note that these plug-ins are in a binary format, and that format must match the
architecture of the machine attempting to use them.

6.14 Interactive Molecular Dynamics

GROMACS supports the interactive molecular dynamics (IMD) protocol as implemented by VMD
to control a running simulation in NAMD. IMD allows to monitor a running GROMACS simu-
lation from a VMD client. In addition, the user can interact with the simulation by pulling on
atoms, residues or fragments with a mouse or a force-feedback device. Additional information
about the GROMACS implementation and an exemplary GROMACS IMD system can be found

http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd
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on this homepage.

6.14.1 Simulation input preparation

The GROMACS implementation allows transmission and interaction with a part of the running
simulation only, e.g. in cases where no water molecules should be transmitted or pulled. The
group is specified via the .mdp option IMD-group. When IMD-group is empty, the IMD
protocol is disabled and cannot be enabled via the switches in mdrun. To interact with the entire
system, IMD-group can be set to System. When using grompp, a .gro file to be used as
VMD input is written out (-imd switch of grompp).

6.14.2 Starting the simulation

Communication between VMD and GROMACS is achieved via TCP sockets and thus enables
controlling an mdrun running locally or on a remote cluster. The port for the connection can be
specified with the -imdport switch of mdrun, 8888 is the default. If a port number of 0 or
smaller is provided, GROMACS automatically assigns a free port to use with IMD.

Every N steps, the mdrun client receives the applied forces from VMD and sends the new posi-
tions to the client. VMD permits increasing or decreasing the communication frequency interac-
tively. By default, the simulation starts and runs even if no IMD client is connected. This behavior
is changed by the -imdwait switch of mdrun. After startup and whenever the client has dis-
connected, the integration stops until reconnection of the client. When the -imdterm switch is
used, the simulation can be terminated by pressing the stop button in VMD. This is disabled by
default. Finally, to allow interacting with the simulation (i.e. pulling from VMD) the -imdpull
switch has to be used. Therefore, a simulation can only be monitored but not influenced from the
VMD client when none of -imdwait, -imdterm or -imdpull are set. However, since the
IMD protocol requires no authentication, it is not advisable to run simulations on a host directly
reachable from an insecure environment. Secure shell forwarding of TCP can be used to connect
to running simulations not directly reachable from the interacting host. Note that the IMD com-
mand line switches of mdrun are hidden by default and show up in the help text only with gmx
mdrun -h -hidden.

6.14.3 Connecting from VMD

In VMD, first the structure corresponding to the IMD group has to be loaded (File → New
Molecule). Then the IMD connection window has to be used (Extensions→ Simulation→ IMD
Connect (NAMD)). In the IMD connection window, hostname and port have to be specified and
followed by pressing Connect. Detach Sim allows disconnecting without terminating the sim-
ulation, while Stop Sim ends the simulation on the next neighbor searching step (if allowed by
-imdterm).

The timestep transfer rate allows adjusting the communication frequency between simulation and
IMD client. Setting the keep rate loads every N th frame into VMD instead of discarding them
when a new one is received. The displayed energies are in SI units in contrast to energies displayed
from NAMD simulations.

http://www.mpibpc.mpg.de/grubmueller/interactivemd
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Chapter 7

Run parameters and
Programs

7.1 On-line and HTML manuals

All the information in this chapter can also be found in HTML format in your GROMACS
data directory. The path depends on where your files are installed, but the default location is
/usr/local/gromacs/share/gromacs/html/online.html. If you installed from
Linux packages it can typically be found as /usr/share/gromacs/html/online.html.
You can also use the online manual from the GROMACS web site, http://manual.gromacs.
org/current.

In addition, we install standard UNIX man pages for all the programs. If you have sourced the
GMXRC script in the GROMACS binary directory for your host they should already be present in
your MANPATH environment variable, and you should be able to type e.g. man gmx-grompp.
You can also use the -h flag on the command line (e.g. gmx grompp -h) to see the same
information, as well as gmx help grompp. The list of all programs are available from gmx
help.

7.2 File types

Table 7.1 lists the file types used by GROMACS along with a short description, and you can find
a more detail description for each file in your HTML reference, or in our online version.

GROMACS files written in XDR format can be read on any architecture with GROMACS version
1.6 or later if the configuration script found the XDR libraries on your system. They should always
be present on UNIX since they are necessary for NFS support.

http://manual.gromacs.org/current
http://manual.gromacs.org/current
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Default Default
Name Ext. Type Option Description
atomtp.atp Asc Atomtype file used by pdb2gmx
eiwit.brk Asc -f Brookhaven data bank file
state.cpt xdr Checkpoint file
nnnice.dat Asc Generic data file
user.dlg Asc Dialog Box data for ngmx
sam.edi Asc ED sampling input
sam.edo Asc ED sampling output
ener.edr Generic energy: edr ene
ener.edr xdr Energy file in portable xdr format
ener.ene Bin Energy file

eiwit.ent Asc -f Entry in the protein date bank
plot.eps Asc Encapsulated PostScript (tm) file
conf.esp Asc -c Coordinate file in ESPResSo format
conf.g96 Asc -c Coordinate file in Gromos-96 format
conf.gro Asc -c Coordinate file in Gromos-87 format
conf.gro -c Structure: gro g96 pdb esp tpr tpb tpa
out.gro -o Structure: gro g96 pdb esp

polar.hdb Asc Hydrogen data base
topinc.itp Asc Include file for topology

run.log Asc -l Log file
ps.m2p Asc Input file for mat2ps
ss.map Asc File that maps matrix data to colors
ss.mat Asc Matrix Data file

grompp.mdp Asc -f grompp input file with MD parameters
hessian.mtx Bin -m Hessian matrix

index.ndx Asc -n Index file
hello.out Asc -o Generic output file
eiwit.pdb Asc -f Protein data bank file

residue.rtp Asc Residue Type file used by pdb2gmx
doc.tex Asc -o LaTeX file

topol.top Asc -p Topology file
topol.tpb Bin -s Binary run input file
topol.tpr -s Generic run input: tpr tpb tpa
topol.tpr -s Structure+mass(db): tpr tpb tpa gro g96 pdb
topol.tpr xdr -s Portable xdr run input file
traj.trj Bin Trajectory file (architecture specific)
traj.trr Full precision trajectory: trr trj cpt
traj.trr xdr Trajectory in portable xdr format
root.xpm Asc X PixMap compatible matrix file
traj.xtc -f Trajec., input: xtc trr trj cpt gro g96 pdb
traj.xtc -f Trajectory, output: xtc trr trj gro g96 pdb
traj.xtc xdr Compressed trajectory (portable xdr format)

graph.xvg Asc -o xvgr/xmgr file

Table 7.1: The GROMACS file types.
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7.3 Run Parameters

7.3.1 General

Default values are given in parentheses. The first option in the list is always the default option.
Units are given in square brackets The difference between a dash and an underscore is ignored. A
sample .mdp file is available. This should be appropriate to start a normal simulation. Edit it to
suit your specific needs and desires.

7.3.2 Preprocessing

include:
directories to include in your topology. Format:
-I/home/john/mylib -I../otherlib

define:
defines to pass to the preprocessor, default is no defines. You can use any defines to control
options in your customized topology files. Options that are already available by default are:

-DFLEXIBLE
Will tell grompp to include flexible water in stead of rigid water into your topology,
this can be useful for normal mode analysis.

-DPOSRES
Will tell grompp to include posre.itp into your topology, used for position restraints.

7.3.3 Run control

integrator: (Despite the name, this list includes algorithms that are not actually integrators.
steep and all entries following it are in this category)

md
A leap-frog algorithm for integrating Newton’s equations of motion.

md-vv
A velocity Verlet algorithm for integrating Newton’s equations of motion. For constant
NVE simulations started from corresponding points in the same trajectory, the trajec-
tories are analytically, but not binary, identical to the md leap-frog integrator. The the
kinetic energy, which is determined from the whole step velocities and is therefore
slightly too high. The advantage of this integrator is more accurate, reversible Nose-
Hoover and Parrinello-Rahman coupling integration based on Trotter expansion, as
well as (slightly too small) full step velocity output. This all comes at the cost off ex-
tra computation, especially with constraints and extra communication in parallel. Note
that for nearly all production simulations the md integrator is accurate enough.
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md-vv-avek
A velocity Verlet algorithm identical to md-vv, except that the kinetic energy is de-
termined as the average of the two half step kinetic energies as in the md integrator,
and this thus more accurate. With Nose-Hoover and/or Parrinello-Rahman coupling
this comes with a slight increase in computational cost.

sd
An accurate and efficient leap-frog stochastic dynamics integrator. With constraints,
coordinates needs to be constrained twice per integration step. Depending on the com-
putational cost of the force calculation, this can take a significant part of the simulation
time. The temperature for one or more groups of atoms (tc-grps) is set with ref-t
[K], the inverse friction constant for each group is set with tau-t [ps]. The parameter
tcoupl is ignored. The random generator is initialized with ld-seed. When used
as a thermostat, an appropriate value for tau-t is 2 ps, since this results in a fric-
tion that is lower than the internal friction of water, while it is high enough to remove
excess heat NOTE: temperature deviations decay twice as fast as with a Berendsen
thermostat with the same tau-t.

sd2
This used to be the default sd integrator, but is now deprecated. Four Gaussian random
numbers are required per coordinate per step. With constraints, the temperature will
be slightly too high.

bd
An Euler integrator for Brownian or position Langevin dynamics, the velocity is the
force divided by a friction coefficient (bd-fric [amu ps−1]) plus random thermal
noise (ref-t). When bd-fric=0, the friction coefficient for each particle is cal-
culated as mass/tau-t, as for the integrator sd. The random generator is initialized
with ld-seed.

steep
A steepest descent algorithm for energy minimization. The maximum step size is
emstep [nm], the tolerance is emtol [kJ mol−1 nm−1].

cg
A conjugate gradient algorithm for energy minimization, the tolerance is emtol [kJ
mol−1 nm−1]. CG is more efficient when a steepest descent step is done every once
in a while, this is determined by nstcgsteep. For a minimization prior to a normal
mode analysis, which requires a very high accuracy, GROMACS should be compiled
in double precision.

l-bfgs
A quasi-Newtonian algorithm for energy minimization according to the low-memory
Broyden-Fletcher-Goldfarb-Shanno approach. In practice this seems to converge faster
than Conjugate Gradients, but due to the correction steps necessary it is not (yet) par-
allelized.

nm
Normal mode analysis is performed on the structure in the tpr file. GROMACS
should be compiled in double precision.
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tpi
Test particle insertion. The last molecule in the topology is the test particle. A trajec-
tory should be provided with the -rerun option of mdrun. This trajectory should
not contain the molecule to be inserted. Insertions are performed nsteps times in
each frame at random locations and with random orientiations of the molecule. When
nstlist is larger than one, nstlist insertions are performed in a sphere with ra-
dius rtpi around a the same random location using the same neighborlist (and the
same long-range energy when rvdw or rcoulomb>rlist, which is only allowed
for single-atom molecules). Since neighborlist construction is expensive, one can per-
form several extra insertions with the same list almost for free. The random seed is set
with ld-seed. The temperature for the Boltzmann weighting is set with ref-t, this
should match the temperature of the simulation of the original trajectory. Dispersion
correction is implemented correctly for tpi. All relevant quantities are written to the
file specified with the -tpi option of mdrun. The distribution of insertion energies
is written to the file specified with the -tpid option of mdrun. No trajectory or en-
ergy file is written. Parallel tpi gives identical results to single node tpi. For charged
molecules, using PME with a fine grid is most accurate and also efficient, since the
potential in the system only needs to be calculated once per frame.

tpic
Test particle insertion into a predefined cavity location. The procedure is the same as
for tpi, except that one coordinate extra is read from the trajectory, which is used
as the insertion location. The molecule to be inserted should be centered at 0,0,0.
Gromacs does not do this for you, since for different situations a different way of
centering might be optimal. Also rtpi sets the radius for the sphere around this
location. Neighbor searching is done only once per frame, nstlist is not used.
Parallel tpic gives identical results to single node tpic.

tinit: (0) [ps]
starting time for your run (only makes sense for integrators md, sd and bd)

dt: (0.001) [ps]
time step for integration (only makes sense for integrators md, sd and bd)

nsteps: (0)
maximum number of steps to integrate or minimize, -1 is no maximum

init-step: (0)
The starting step. The time at an step i in a run is calculated as: t = tinit + dt*(init-step
+ i). The free-energy lambda is calculated as: lambda = init-lambda + delta-lambda*(init-step
+ i). Also non-equilibrium MD parameters can depend on the step number. Thus for exact
restarts or redoing part of a run it might be necessary to set init-step to the step number
of the restart frame. gmx convert-tpr does this automatically.

comm-mode:

Linear
Remove center of mass translation
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Angular
Remove center of mass translation and rotation around the center of mass

None
No restriction on the center of mass motion

nstcomm: (100) [steps]
frequency for center of mass motion removal

comm-grps:
group(s) for center of mass motion removal, default is the whole system

7.3.4 Langevin dynamics

bd-fric: (0) [amu ps−1]
Brownian dynamics friction coefficient. When bd-fric=0, the friction coefficient for
each particle is calculated as mass/tau-t.

ld-seed: (-1) [integer]
used to initialize random generator for thermal noise for stochastic and Brownian dynamics.
When ld-seed is set to -1, a pseudo random seed is used. When running BD or SD
on multiple processors, each processor uses a seed equal to ld-seed plus the processor
number.

7.3.5 Energy minimization

emtol: (10.0) [kJ mol−1 nm−1]
the minimization is converged when the maximum force is smaller than this value

emstep: (0.01) [nm]
initial step-size

nstcgsteep: (1000) [steps]
frequency of performing 1 steepest descent step while doing conjugate gradient energy min-
imization.

nbfgscorr: (10)
Number of correction steps to use for L-BFGS minimization. A higher number is (at least
theoretically) more accurate, but slower.

7.3.6 Shell Molecular Dynamics

When shells or flexible constraints are present in the system the positions of the shells and the
lengths of the flexible constraints are optimized at every time step until either the RMS force on
the shells and constraints is less than emtol, or a maximum number of iterations (niter) has been
reached
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emtol: (10.0) [kJ mol−1 nm−1]
the minimization is converged when the maximum force is smaller than this value. For shell
MD this value should be 1.0 at most, but since the variable is used for energy minimization
as well the default is 10.0.

niter: (20)
maximum number of iterations for optimizing the shell positions and the flexible constraints.

fcstep: (0) [ps2]
the step size for optimizing the flexible constraints. Should be chosen as mu/(d2V/dq2)
where mu is the reduced mass of two particles in a flexible constraint and d2V/dq2 is the
second derivative of the potential in the constraint direction. Hopefully this number does
not differ too much between the flexible constraints, as the number of iterations and thus the
runtime is very sensitive to fcstep. Try several values!

7.3.7 Test particle insertion

rtpi: (0.05) [nm]
the test particle insertion radius see integrators tpi and tpic

7.3.8 Output control

nstxout: (0) [steps]
number of steps that elapse between writing coordinates to output trajectory file, the last
coordinates are always written

nstvout: (0) [steps]
number of steps that elapse between writing velocities to output trajectory, the last velocities
are always written

nstfout: (0) [steps]
number of steps that elapse between writing forces to output trajectory.

nstlog: (1000) [steps]
number of steps that elapse between writing energies to the log file, the last energies are
always written

nstcalcenergy: (100)
number of steps that elapse between calculating the energies, 0 is never. This option is only
relevant with dynamics. With a twin-range cut-off setup nstcalcenergy should be equal
to or a multiple of nstlist. This option affects the performance in parallel simulations,
because calculating energies requires global communication between all processes which
can become a bottleneck at high parallelization.

nstenergy: (1000) [steps]
number of steps that else between writing energies to energy file, the last energies are al-
ways written, should be a multiple of nstcalcenergy. Note that the exact sums and
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fluctuations over all MD steps modulo nstcalcenergy are stored in the energy file, so
g_energy can report exact energy averages and fluctuations also when nstenergy>1

nstxout-compressed: (0) [steps]
number of steps that elapse between writing position coordinates using lossy compression

compressed-x-precision: (1000) [real]
precision with which to write to the compressed trajectory file

compressed-x-grps:
group(s) to write to the compressed trajectory file, by default the whole system is written (if
nstxout-compressed > 0)

energygrps:
group(s) to write to energy file

7.3.9 Neighbor searching

cutoff-scheme:

Verlet
Generate a pair list with buffering. The buffer size is automatically set based on
verlet-buffer-tolerance, unless this is set to -1, in which case rlist will
be used. This option has an explicit, exact cut-off at rvdw=rcoulomb. Currently
only cut-off, reaction-field, PME electrostatics and plain LJ are supported. Some
mdrun functionality is not yet supported with the Verlet scheme, but grompp
checks for this. Native GPU acceleration is only supported with Verlet. With
GPU-accelerated PME or with separate PME ranks, mdrun will automatically tune
the CPU/GPU load balance by scaling rcoulomb and the grid spacing. This can be
turned off with -notunepme. Verlet is faster than group when there is no water,
or if group would use a pair-list buffer to conserve energy.

group
Generate a pair list for groups of atoms. These groups correspond to the charge groups
in the topology. This was the only cut-off treatment scheme before version 4.6. There
is no explicit buffering of the pair list. This enables efficient force calculations for
water, but energy is only conserved when a buffer is explicitly added.

nstlist: (10) [steps]

>0
Frequency to update the neighbor list (and the long-range forces, when using twin-
range cut-offs). When this is 0, the neighbor list is made only once. With energy mini-
mization the neighborlist will be updated for every energy evaluation when nstlist>0.
With cutoff-scheme=Verlet and verlet-buffer-tolerance set, nstlist
is actually a minimum value and mdrun might increase it, unless it is set to 1. With
parallel simulations and/or non-bonded force calculation on the GPU, a value of 20
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or 40 often gives the best performance. With cutoff-scheme=Group and non-
exact cut-off’s, nstlist will affect the accuracy of your simulation and it can not be
chosen freely.

0
The neighbor list is only constructed once and never updated. This is mainly useful
for vacuum simulations in which all particles see each other.

-1
Automated update frequency, only supported with cutoff-scheme=group. This
can only be used with switched, shifted or user potentials where the cut-off can be
smaller than rlist. One then has a buffer of size rlist minus the longest cut-off.
The neighbor list is only updated when one or more particles have moved further than
half the buffer size from the center of geometry of their charge group as determined
at the previous neighbor search. Coordinate scaling due to pressure coupling or the
deform option is taken into account. This option guarantees that their are no cut-
off artifacts, but for larger systems this can come at a high computational cost, since
the neighbor list update frequency will be determined by just one or two particles
moving slightly beyond the half buffer length (which does not necessarily imply that
the neighbor list is invalid), while 99.99% of the particles are fine.

nstcalclr: (-1) [steps]

Controls the period between calculations of long-range forces when using the group cut-off
scheme.
1

Calculate the long-range forces every single step. This is useful to have separate neigh-
bor lists with buffers for electrostatics and Van der Waals interactions, and in particular
it makes it possible to have the Van der Waals cutoff longer than electrostatics (useful
e.g. with PME). However, there is no point in having identical long-range cutoffs for
both interaction forms and update them every step - then it will be slightly faster to put
everything in the short-range list.

>1
Calculate the long-range forces every nstcalclr steps and use a multiple-time-step
integrator to combine forces. This can now be done more frequently than nstlist
since the lists are stored, and it might be a good idea e.g. for Van der Waals interactions
that vary slower than electrostatics.

-1
Calculate long-range forces on steps where neighbor searching is performed. While
this is the default value, you might want to consider updating the long-range forces
more frequently.

Note that twin-range force evaluation might be enabled automatically by PP-PME load bal-
ancing. This is done in order to maintain the chosen Van der Waals interaction radius even
if the load balancing is changing the electrostatics cutoff. If the .mdp file already specifies
twin-range interactions (e.g. to evaluate Lennard-Jones interactions with a longer cutoff than
the PME electrostatics every 2-3 steps), the load balancing will have also a small effect on
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Lennard-Jones, since the short-range cutoff (inside which forces are evaluated every step) is
changed.

ns-type:

grid
Make a grid in the box and only check atoms in neighboring grid cells when construct-
ing a new neighbor list every nstlist steps. In large systems grid search is much
faster than simple search.

simple
Check every atom in the box when constructing a new neighbor list every nstlist
steps (only with cutoff-scheme=group).

pbc:

xyz
Use periodic boundary conditions in all directions.

no
Use no periodic boundary conditions, ignore the box. To simulate without cut-offs, set
all cut-offs to 0 and nstlist=0. For best performance without cut-offs on a single
MPI rank, use nstlist=0, ns-type=simple

xy
Use periodic boundary conditions in x and y directions only. This works only with
ns-type=grid and can be used in combination with walls. Without walls or
with only one wall the system size is infinite in the z direction. Therefore pressure
coupling or Ewald summation methods can not be used. These disadvantages do not
apply when two walls are used.

periodic-molecules:

no
molecules are finite, fast molecular PBC can be used

yes
for systems with molecules that couple to themselves through the periodic boundary
conditions, this requires a slower PBC algorithm and molecules are not made whole in
the output

verlet-buffer-tolerance: (0.005) [kJ/mol/ps]
Useful only with cutoff-scheme=Verlet. This sets the maximum allowed error for
pair interactions per particle caused by the Verlet buffer, which indirectly sets rlist. As
both nstlist and the Verlet buffer size are fixed (for performance reasons), particle pairs
not in the pair list can occasionally get within the cut-off distance during nstlist-1 nsteps.
This causes very small jumps in the energy. In a constant-temperature ensemble, these very
small energy jumps can be estimated for a given cut-off and rlist. The estimate assumes
a homogeneous particle distribution, hence the errors might be slightly underestimated for
multi-phase systems. For longer pair-list life-time (nstlist-1)*dt the buffer is overesti-
mated, because the interactions between particles are ignored. Combined with cancellation
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of errors, the actual drift of the total energy is usually one to two orders of magnitude
smaller. Note that the generated buffer size takes into account that the GROMACS pair-list
setup leads to a reduction in the drift by a factor 10, compared to a simple particle-pair based
list. Without dynamics (energy minimization etc.), the buffer is 5% of the cut-off. For NVE
simulations the initial temperature is used, unless this is zero, in which case a buffer of 10%
is used. For NVE simulations the tolerance usually needs to be lowered to achieve proper
energy conservation on the nanosecond time scale. To override the automated buffer setting,
use verlet-buffer-tolerance=-1 and set rlist manually.

rlist: (1) [nm]
Cut-off distance for the short-range neighbor list. With cutoff-scheme=Verlet, this
is by default set by the verlet-buffer-tolerance option and the value of rlist is
ignored.

rlistlong: (-1) [nm]
Cut-off distance for the long-range neighbor list. This parameter is only relevant for a twin-
range cut-off setup with switched potentials. In that case a buffer region is required to
account for the size of charge groups. In all other cases this parameter is automatically set
to the longest cut-off distance.

7.3.10 Electrostatics

coulombtype:

Cut-off
Twin range cut-offs with neighborlist cut-off rlist and Coulomb cut-off rcoulomb,
where rcoulomb≥rlist.

Ewald
Classical Ewald sum electrostatics. The real-space cut-off rcoulomb should be equal
to rlist. Use e.g. rlist=0.9, rcoulomb=0.9. The highest magnitude of wave
vectors used in reciprocal space is controlled by fourierspacing. The relative
accuracy of direct/reciprocal space is controlled by ewald-rtol.
NOTE: Ewald scales as O(N3/2) and is thus extremely slow for large systems. It is
included mainly for reference - in most cases PME will perform much better.

PME
Fast smooth Particle-Mesh Ewald (SPME) electrostatics. Direct space is similar to the
Ewald sum, while the reciprocal part is performed with FFTs. Grid dimensions are
controlled with fourierspacing and the interpolation order with pme-order.
With a grid spacing of 0.1 nm and cubic interpolation the electrostatic forces have
an accuracy of 2-3*10−4. Since the error from the vdw-cutoff is larger than this you
might try 0.15 nm. When running in parallel the interpolation parallelizes better than
the FFT, so try decreasing grid dimensions while increasing interpolation.

P3M-AD
Particle-Particle Particle-Mesh algorithm with analytical derivative for for long range
electrostatic interactions. The method and code is identical to SPME, except that the
influence function is optimized for the grid. This gives a slight increase in accuracy.
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Reaction-Field electrostatics
Reaction field with Coulomb cut-off rcoulomb, where rcoulomb ≥ rlist. The
dielectric constant beyond the cut-off is epsilon-rf. The dielectric constant can be
set to infinity by setting epsilon-rf=0.

Generalized-Reaction-Field
Generalized reaction field with Coulomb cut-off rcoulomb, where rcoulomb ≥
rlist. The dielectric constant beyond the cut-off is epsilon-rf. The ionic
strength is computed from the number of charged (i.e. with non zero charge) charge
groups. The temperature for the GRF potential is set with ref-t [K].

Reaction-Field-zero
In GROMACS, normal reaction-field electrostatics with cutoff-scheme=group
leads to bad energy conservation. Reaction-Field-zero solves this by making
the potential zero beyond the cut-off. It can only be used with an infinite dielectric con-
stant (epsilon-rf=0), because only for that value the force vanishes at the cut-off.
rlist should be 0.1 to 0.3 nm larger than rcoulomb to accommodate for the size of
charge groups and diffusion between neighbor list updates. This, and the fact that ta-
ble lookups are used instead of analytical functions make Reaction-Field-zero
computationally more expensive than normal reaction-field.

Reaction-Field-nec
The same as Reaction-Field, but implemented as in GROMACS versions before
3.3. No reaction-field correction is applied to excluded atom pairs and self pairs. The
1-4 interactions are calculated using a reaction-field. The missing correction due to
the excluded pairs that do not have a 1-4 interaction is up to a few percent of the total
electrostatic energy and causes a minor difference in the forces and the pressure.

Shift
Analogous to Shift for vdwtype. You might want to use Reaction-Field-zero
instead, which has a similar potential shape, but has a physical interpretation and has
better energies due to the exclusion correction terms.

Encad-Shift
The Coulomb potential is decreased over the whole range, using the definition from
the Encad simulation package.

Switch
Analogous to Switch for vdwtype. Switching the Coulomb potential can lead to
serious artifacts, advice: use Reaction-Field-zero instead.

User
mdrun will now expect to find a file table.xvg with user-defined potential func-
tions for repulsion, dispersion and Coulomb. When pair interactions are present,
mdrun also expects to find a file tablep.xvg for the pair interactions. When the
same interactions should be used for non-bonded and pair interactions the user can
specify the same file name for both table files. These files should contain 7 columns:
the x value, f(x), -f’(x), g(x), -g’(x), h(x), -h’(x), where f(x) is the
Coulomb function, g(x) the dispersion function and h(x) the repulsion function.
When vdwtype is not set to User the values for g, -g’, h and -h’ are ignored. For
the non-bonded interactions x values should run from 0 to the largest cut-off distance
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+ table-extension and should be uniformly spaced. For the pair interactions the
table length in the file will be used. The optimal spacing, which is used for non-user
tables, is 0.002 [nm] when you run in mixed precision or 0.0005 [nm] when you
run in double precision. The function value at x=0 is not important. More information
is in the printed manual.

PME-Switch
A combination of PME and a switch function for the direct-space part (see above).
rcoulomb is allowed to be smaller than rlist. This is mainly useful constant
energy simulations (note that using PME with cutoff-scheme=Verlet will be
more efficient).

PME-User
A combination of PME and user tables (see above). rcoulomb is allowed to be
smaller than rlist. The PME mesh contribution is subtracted from the user table by
mdrun. Because of this subtraction the user tables should contain about 10 decimal
places.

PME-User-Switch
A combination of PME-User and a switching function (see above). The switching
function is applied to final particle-particle interaction, i.e. both to the user supplied
function and the PME Mesh correction part.

coulomb-modifier:

Potential-shift-Verlet
Selects Potential-shift with the Verlet cutoff-scheme, as it is (nearly) free; se-
lects None with the group cutoff-scheme.

Potential-shift
Shift the Coulomb potential by a constant such that it is zero at the cut-off. This makes
the potential the integral of the force. Note that this does not affect the forces or the
sampling.

None
Use an unmodified Coulomb potential. With the group scheme this means no exact
cut-off is used, energies and forces are calculated for all pairs in the neighborlist.

rcoulomb-switch: (0) [nm]
where to start switching the Coulomb potential, only relevant when force or potential switch-
ing is used

rcoulomb: (1) [nm]
distance for the Coulomb cut-off

epsilon-r: (1)
The relative dielectric constant. A value of 0 means infinity.

epsilon-rf: (0)
The relative dielectric constant of the reaction field. This is only used with reaction-field
electrostatics. A value of 0 means infinity.
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7.3.11 VdW

vdwtype:

Cut-off
Twin range cut-offs with neighbor list cut-off rlist and VdW cut-off rvdw, where
rvdw ≥ rlist.

PME
Fast smooth Particle-mesh Ewald (SPME) for VdW interactions. The grid dimensions
are controlled with fourierspacing in the same way as for electrostatics, and
the interpolation order is controlled with pme-order. The relative accuracy of di-
rect/reciprocal space is controlled by ewald-rtol-lj, and the specific combination
rules that are to be used by the reciprocal routine are set using lj-pme-comb-rule.

Shift
This functionality is deprecated and replaced by vdw-modifier = Force-switch.
The LJ (not Buckingham) potential is decreased over the whole range and the forces
decay smoothly to zero between rvdw-switch and rvdw. The neighbor search cut-
off rlist should be 0.1 to 0.3 nm larger than rvdw to accommodate for the size of
charge groups and diffusion between neighbor list updates.

Switch
This functionality is deprecated and replaced by vdw-modifier = Potential-switch.
The LJ (not Buckingham) potential is normal out to rvdw-switch, after which it is
switched off to reach zero at rvdw. Both the potential and force functions are continu-
ously smooth, but be aware that all switch functions will give rise to a bulge (increase)
in the force (since we are switching the potential). The neighbor search cut-off rlist
should be 0.1 to 0.3 nm larger than rvdw to accommodate for the size of charge groups
and diffusion between neighbor list updates.

Encad-Shift
The LJ (not Buckingham) potential is decreased over the whole range, using the defi-
nition from the Encad simulation package.

User
See user for coulombtype. The function value at x=0 is not important. When
you want to use LJ correction, make sure that rvdw corresponds to the cut-off in the
user-defined function. When coulombtype is not set to User the values for f and
-f’ are ignored.

vdw-modifier:

Potential-shift-Verlet
Selects Potential-shift with the Verlet cutoff-scheme, as it is (nearly) free; se-
lects None with the group cutoff-scheme.

Potential-shift
Shift the Van der Waals potential by a constant such that it is zero at the cut-off. This
makes the potential the integral of the force. Note that this does not affect the forces
or the sampling.
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None
Use an unmodified Van der Waals potential. With the group scheme this means no
exact cut-off is used, energies and forces are calculated for all pairs in the neighborlist.

Force-switch
Smoothly switches the forces to zero between rvdw-switch and rvdw. This shifts
the potential shift over the whole range and switches it to zero at the cut-off. Note that
this is more expensive to calculate than a plain cut-off and it is not required for energy
conservation, since Potential-shift conserves energy just as well.

Potential-switch
Smoothly switches the potential to zero between rvdw-switch and rvdw. Note
that this introduces articifically large forces in the switching region and is much more
expensive to calculate. This option should only be used if the force field you are using
requires this.

rvdw-switch: (0) [nm]
where to start switching the LJ force and possibly the potential, only relevant when force or
potential switching is used

rvdw: (1) [nm]
distance for the LJ or Buckingham cut-off

DispCorr:

no
don’t apply any correction

EnerPres
apply long range dispersion corrections for Energy and Pressure

Ener
apply long range dispersion corrections for Energy only

7.3.12 Tables

table-extension: (1) [nm]
Extension of the non-bonded potential lookup tables beyond the largest cut-off distance. The
value should be large enough to account for charge group sizes and the diffusion between
neighbor-list updates. Without user defined potential the same table length is used for the
lookup tables for the 1-4 interactions, which are always tabulated irrespective of the use
of tables for the non-bonded interactions. The value of table-extension in no way
affects the values of rlist, rcoulomb, or rvdw.

energygrp-table:
When user tables are used for electrostatics and/or VdW, here one can give pairs of energy
groups for which seperate user tables should be used. The two energy groups will be ap-
pended to the table file name, in order of their definition in energygrps, seperated by
underscores. For example, if energygrps = Na Cl Sol and energygrp-table
= Na Na Na Cl, mdrun will read table_Na_Na.xvg and table_Na_Cl.xvg in
addition to the normal table.xvg which will be used for all other energy group pairs.
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7.3.13 Ewald

fourierspacing: (0.12) [nm]
For ordinary Ewald, the ratio of the box dimensions and the spacing determines a lower
bound for the number of wave vectors to use in each (signed) direction. For PME and P3M,
that ratio determines a lower bound for the number of Fourier-space grid points that will
be used along that axis. In all cases, the number for each direction can be overridden by
entering a non-zero value for fourier_n[xyz]. For optimizing the relative load of the
particle-particle interactions and the mesh part of PME, it is useful to know that the accuracy
of the electrostatics remains nearly constant when the Coulomb cut-off and the PME grid
spacing are scaled by the same factor.

fourier-nx (0) ; fourier-ny (0) ; fourier-nz: (0)
Highest magnitude of wave vectors in reciprocal space when using Ewald. Grid size when
using PME or P3M. These values override fourierspacing per direction. The best
choice is powers of 2, 3, 5 and 7. Avoid large primes.

pme-order (4)
Interpolation order for PME. 4 equals cubic interpolation. You might try 6/8/10 when run-
ning in parallel and simultaneously decrease grid dimension.

ewald-rtol (1e-5)
The relative strength of the Ewald-shifted direct potential at rcoulomb is given by ewald-rtol.
Decreasing this will give a more accurate direct sum, but then you need more wave vectors
for the reciprocal sum.

ewald-rtol-lj (1e-3)
When doing PME for VdW-interactions, ewald-rtol-lj is used to control the relative
strength of the dispersion potential at rvdw in the same way as ewald-rtol controls the
electrostatic potential.

lj-pme-comb-rule (Geometric)
The combination rules used to combine VdW-parameters in the reciprocal part of LJ-PME.
Geometric rules are much faster than Lorentz-Berthelot and usually the recommended choice,
even when the rest of the force field uses the Lorentz-Berthelot rules.
Geometric

Apply geometric combination rules
Lorentz-Berthelot

Apply Lorentz-Berthelot combination rules

ewald-geometry: (3d)

3d
The Ewald sum is performed in all three dimensions.

3dc
The reciprocal sum is still performed in 3D, but a force and potential correction applied
in the z dimension to produce a pseudo-2D summation. If your system has a slab
geometry in the x-y plane you can try to increase the z-dimension of the box (a box
height of 3 times the slab height is usually ok) and use this option.
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epsilon-surface: (0)
This controls the dipole correction to the Ewald summation in 3D. The default value of zero
means it is turned off. Turn it on by setting it to the value of the relative permittivity of the
imaginary surface around your infinite system. Be careful - you shouldn’t use this if you
have free mobile charges in your system. This value does not affect the slab 3DC variant of
the long range corrections.

optimize-fft:

no
Don’t calculate the optimal FFT plan for the grid at startup.

yes
Calculate the optimal FFT plan for the grid at startup. This saves a few percent for
long simulations, but takes a couple of minutes at start.

7.3.14 Temperature coupling

tcoupl:

no
No temperature coupling.

berendsen
Temperature coupling with a Berendsen-thermostat to a bath with temperature ref-t
[K], with time constant tau-t [ps]. Several groups can be coupled separately, these
are specified in the tc-grps field separated by spaces.

nose-hoover
Temperature coupling using a Nose-Hoover extended ensemble. The reference tem-
perature and coupling groups are selected as above, but in this case tau-t [ps] con-
trols the period of the temperature fluctuations at equilibrium, which is slightly dif-
ferent from a relaxation time. For NVT simulations the conserved energy quantity is
written to energy and log file.

andersen
Temperature coupling by randomizing a fraction of the particles at each timestep. Ref-
erence temperature and coupling groups are selected as above. tau-t is the average
time between randomization of each molecule. Inhibits particle dynamics somewhat,
but little or no ergodicity issues. Currently only implemented with velocity Verlet, and
not implemented with constraints.

andersen-massive
Temperature coupling by randomizing all particles at infrequent timesteps. Reference
temperature and coupling groups are selected as above. tau-t is the time between
randomization of all molecules. Inhibits particle dynamics somewhat, but little or no
ergodicity issues. Currently only implemented with velocity Verlet.

v-rescale
Temperature coupling using velocity rescaling with a stochastic term (JCP 126, 014101).
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This thermostat is similar to Berendsen coupling, with the same scaling using tau-t,
but the stochastic term ensures that a proper canonical ensemble is generated. The ran-
dom seed is set with ld-seed. This thermostat works correctly even for tau-t=0.
For NVT simulations the conserved energy quantity is written to the energy and log
file.

nsttcouple: (-1)
The frequency for coupling the temperature. The default value of -1 sets nsttcouple
equal to nstlist, unless nstlist≤0, then a value of 10 is used. For velocity Verlet
integrators nsttcouple is set to 1.

nh-chain-length (10)
the number of chained Nose-Hoover thermostats for velocity Verlet integrators, the leap-
frog md integrator only supports 1. Data for the NH chain variables is not printed to the .edr,
but can be using the GMX_NOSEHOOVER_CHAINS environment variable

tc-grps:
groups to couple separately to temperature bath

tau-t: [ps]
time constant for coupling (one for each group in tc-grps), -1 means no temperature
coupling

ref-t: [K]
reference temperature for coupling (one for each group in tc-grps)

7.3.15 Pressure coupling

pcoupl:

no
No pressure coupling. This means a fixed box size.

berendsen
Exponential relaxation pressure coupling with time constant tau-p [ps]. The box is
scaled every timestep. It has been argued that this does not yield a correct thermody-
namic ensemble, but it is the most efficient way to scale a box at the beginning of a
run.

Parrinello-Rahman
Extended-ensemble pressure coupling where the box vectors are subject to an equa-
tion of motion. The equation of motion for the atoms is coupled to this. No instanta-
neous scaling takes place. As for Nose-Hoover temperature coupling the time constant
tau-p [ps] is the period of pressure fluctuations at equilibrium. This is probably a
better method when you want to apply pressure scaling during data collection, but
beware that you can get very large oscillations if you are starting from a different pres-
sure. For simulations where the exact fluctation of the NPT ensemble are important,
or if the pressure coupling time is very short it may not be appropriate, as the previous
time step pressure is used in some steps of the GROMACS implementation for the
current time step pressure.
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MTTK
Martyna-Tuckerman-Tobias-Klein implementation, only useable with md-vv or md-vv-avek,
very similar to Parrinello-Rahman. As for Nose-Hoover temperature coupling the time con-
stant tau-p [ps] is the period of pressure fluctuations at equilibrium. This is probably a
better method when you want to apply pressure scaling during data collection, but beware
that you can get very large oscillations if you are starting from a different pressure. Currently
only supports isotropic scaling.

pcoupltype:

isotropic
Isotropic pressure coupling with time constant tau-p [ps]. The compressibility and
reference pressure are set with compressibility [bar−1] and ref-p [bar], one
value is needed.

semiisotropic
Pressure coupling which is isotropic in the x and y direction, but different in the z
direction. This can be useful for membrane simulations. 2 values are needed for x/y
and z directions respectively.

anisotropic
Idem, but 6 values are needed for xx, yy, zz, xy/yx, xz/zx and yz/zy compo-
nents, respectively. When the off-diagonal compressibilities are set to zero, a rectan-
gular box will stay rectangular. Beware that anisotropic scaling can lead to extreme
deformation of the simulation box.

surface-tension
Surface tension coupling for surfaces parallel to the xy-plane. Uses normal pressure
coupling for the z-direction, while the surface tension is coupled to the x/y dimen-
sions of the box. The first ref-p value is the reference surface tension times the
number of surfaces [bar nm], the second value is the reference z-pressure [bar]. The
two compressibility [bar−1] values are the compressibility in the x/y and z
direction respectively. The value for the z-compressibility should be reasonably accu-
rate since it influences the convergence of the surface-tension, it can also be set to zero
to have a box with constant height.

nstpcouple: (-1)
The frequency for coupling the pressure. The default value of -1 sets nstpcouple equal to
nstlist, unless nstlist ≤0, then a value of 10 is used. For velocity Verlet integrators
nstpcouple is set to 1.

tau-p: (1) [ps]
time constant for coupling

compressibility: [bar−1]
compressibility (NOTE: this is now really in bar−1) For water at 1 atm and 300 K the
compressibility is 4.5e-5 [bar−1].

ref-p: [bar]
reference pressure for coupling
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refcoord-scaling:

no
The reference coordinates for position restraints are not modified. Note that with this
option the virial and pressure will depend on the absolute positions of the reference
coordinates.

all
The reference coordinates are scaled with the scaling matrix of the pressure coupling.

com
Scale the center of mass of the reference coordinates with the scaling matrix of the
pressure coupling. The vectors of each reference coordinate to the center of mass
are not scaled. Only one COM is used, even when there are multiple molecules with
position restraints. For calculating the COM of the reference coordinates in the starting
configuration, periodic boundary conditions are not taken into account.

7.3.16 Simulated annealing

Simulated annealing is controlled separately for each temperature group in GROMACS. The ref-
erence temperature is a piecewise linear function, but you can use an arbitrary number of points
for each group, and choose either a single sequence or a periodic behaviour for each group. The
actual annealing is performed by dynamically changing the reference temperature used in the ther-
mostat algorithm selected, so remember that the system will usually not instantaneously reach the
reference temperature!

annealing:
Type of annealing for each temperature group
no

No simulated annealing - just couple to reference temperature value.

single
A single sequence of annealing points. If your simulation is longer than the time of
the last point, the temperature will be coupled to this constant value after the annealing
sequence has reached the last time point.

periodic
The annealing will start over at the first reference point once the last reference time is
reached. This is repeated until the simulation ends.

annealing-npoints:
A list with the number of annealing reference/control points used for each temperature
group. Use 0 for groups that are not annealed. The number of entries should equal the
number of temperature groups.

annealing-time:
List of times at the annealing reference/control points for each group. If you are using
periodic annealing, the times will be used modulo the last value, i.e. if the values are 0, 5,
10, and 15, the coupling will restart at the 0ps value after 15ps, 30ps, 45ps, etc. The number
of entries should equal the sum of the numbers given in annealing-npoints.
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annealing-temp:
List of temperatures at the annealing reference/control points for each group. The number
of entries should equal the sum of the numbers given in annealing-npoints.

Confused? OK, let’s use an example. Assume you have two temperature groups, set the
group selections to annealing = single periodic, the number of points of each
group to annealing-npoints = 3 4, the times to annealing-time = 0 3 6
0 2 4 6 and finally temperatures to annealing-temp = 298 280 270 298 320
320 298. The first group will be coupled to 298K at 0ps, but the reference temperature
will drop linearly to reach 280K at 3ps, and then linearly between 280K and 270K from 3ps
to 6ps. After this is stays constant, at 270K. The second group is coupled to 298K at 0ps,
it increases linearly to 320K at 2ps, where it stays constant until 4ps. Between 4ps and 6ps
it decreases to 298K, and then it starts over with the same pattern again, i.e. rising linearly
from 298K to 320K between 6ps and 8ps. Check the summary printed by grompp if you
are unsure!

7.3.17 Velocity generation

gen-vel:

no
Do not generate velocities. The velocities are set to zero when there are no velocities
in the input structure file.

yes
Generate velocities in grompp according to a Maxwell distribution at temperature
gen-temp [K], with random seed gen-seed. This is only meaningful with integra-
tor md.

gen-temp: (300) [K]
temperature for Maxwell distribution

gen-seed: (-1) [integer]
used to initialize random generator for random velocities, when gen-seed is set to -1, a
pseudo random seed is used.

7.3.18 Bonds

constraints:

none
No constraints except for those defined explicitly in the topology, i.e. bonds are rep-
resented by a harmonic (or other) potential or a Morse potential (depending on the
setting of morse) and angles by a harmonic (or other) potential.

h-bonds
Convert the bonds with H-atoms to constraints.
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all-bonds
Convert all bonds to constraints.

h-angles
Convert all bonds and additionally the angles that involve H-atoms to bond-constraints.

all-angles
Convert all bonds and angles to bond-constraints.

constraint-algorithm:

LINCS
LINear Constraint Solver. With domain decomposition the parallel version P-LINCS
is used. The accuracy in set with lincs-order, which sets the number of matrices
in the expansion for the matrix inversion. After the matrix inversion correction the
algorithm does an iterative correction to compensate for lengthening due to rotation.
The number of such iterations can be controlled with lincs-iter. The root mean
square relative constraint deviation is printed to the log file every nstlog steps. If a
bond rotates more than lincs-warnangle [degrees] in one step, a warning will be
printed both to the log file and to stderr. LINCS should not be used with coupled
angle constraints.

SHAKE
SHAKE is slightly slower and less stable than LINCS, but does work with angle con-
straints. The relative tolerance is set with shake-tol, 0.0001 is a good value for
“normal” MD. SHAKE does not support constraints between atoms on different nodes,
thus it can not be used with domain decompositon when inter charge-group constraints
are present. SHAKE can not be used with energy minimization.

continuation:
This option was formerly known as unconstrained-start.
no

apply constraints to the start configuration and reset shells

yes
do not apply constraints to the start configuration and do not reset shells, useful for
exact coninuation and reruns

shake-tol: (0.0001)
relative tolerance for SHAKE

lincs-order: (4)
Highest order in the expansion of the constraint coupling matrix. When constraints form
triangles, an additional expansion of the same order is applied on top of the normal expan-
sion only for the couplings within such triangles. For “normal” MD simulations an order
of 4 usually suffices, 6 is needed for large time-steps with virtual sites or BD. For accurate
energy minimization an order of 8 or more might be required. With domain decomposition,
the cell size is limited by the distance spanned by lincs-order+1 constraints. When
one wants to scale further than this limit, one can decrease lincs-order and increase
lincs-iter, since the accuracy does not deteriorate when (1+lincs-iter)*lincs-order
remains constant.
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lincs-iter: (1)
Number of iterations to correct for rotational lengthening in LINCS. For normal runs a
single step is sufficient, but for NVE runs where you want to conserve energy accurately or
for accurate energy minimization you might want to increase it to 2.

lincs-warnangle: (30) [degrees]
maximum angle that a bond can rotate before LINCS will complain

morse:

no
bonds are represented by a harmonic potential

yes
bonds are represented by a Morse potential

7.3.19 Energy group exclusions

energygrp-excl:
Pairs of energy groups for which all non-bonded interactions are excluded. An example: if
you have two energy groups Protein and SOL, specifying

energygrp-excl = Protein Protein SOL SOL

would give only the non-bonded interactions between the protein and the solvent. This is
especially useful for speeding up energy calculations with mdrun -rerun and for exclud-
ing interactions within frozen groups.

7.3.20 Walls

nwall: 0
When set to 1 there is a wall at z=0, when set to 2 there is also a wall at z=z-box. Walls
can only be used with pbc=xy. When set to 2 pressure coupling and Ewald summation
can be used (it is usually best to use semiisotropic pressure coupling with the x/y com-
pressibility set to 0, as otherwise the surface area will change). Walls interact wit the rest of
the system through an optional wall-atomtype. Energy groups wall0 and wall1 (for
nwall=2) are added automatically to monitor the interaction of energy groups with each
wall. The center of mass motion removal will be turned off in the z-direction.

wall-atomtype:
the atom type name in the force field for each wall. By (for example) defining a special
wall atom type in the topology with its own combination rules, this allows for independent
tuning of the interaction of each atomtype with the walls.

wall-type:

9-3
LJ integrated over the volume behind the wall: 9-3 potential
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10-4
LJ integrated over the wall surface: 10-4 potential

12-6
direct LJ potential with the z distance from the wall

table
user defined potentials indexed with the z distance from the wall, the tables are read
analogously to the energygrp-table option, where the first name is for a “nor-
mal” energy group and the second name is wall0 or wall1, only the dispersion and
repulsion columns are used

wall-r-linpot: -1 (nm)
Below this distance from the wall the potential is continued linearly and thus the force is
constant. Setting this option to a postive value is especially useful for equilibration when
some atoms are beyond a wall. When the value is ≤0 (<0 for wall-type=table), a
fatal error is generated when atoms are beyond a wall.

wall-density: [nm−3/nm−2]
the number density of the atoms for each wall for wall types 9-3 and 10-4

wall-ewald-zfac: 3
The scaling factor for the third box vector for Ewald summation only, the minimum is 2.
Ewald summation can only be used with nwall=2, where one should use ewald-geometry=3dc.
The empty layer in the box serves to decrease the unphysical Coulomb interaction between
periodic images.

7.3.21 COM pulling

pull:

no
No center of mass pulling. All the following pull options will be ignored (and if present
in the .mdp file, they unfortunately generate warnings)

umbrella
Center of mass pulling using an umbrella potential between the reference group and
one or more groups.

constraint
Center of mass pulling using a constraint between the reference group and one or more
groups. The setup is identical to the option umbrella, except for the fact that a rigid
constraint is applied instead of a harmonic potential.

constant-force
Center of mass pulling using a linear potential and therefore a constant force. For this
option there is no reference position and therefore the parameters pull-init and
pull-rate are not used.

pull-geometry:
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distance
Pull along the vector connecting the two groups. Components can be selected with
pull-dim.

direction
Pull in the direction of pull-vec.

direction-periodic
As direction, but allows the distance to be larger than half the box size. With
this geometry the box should not be dynamic (e.g. no pressure scaling) in the pull
dimensions and the pull force is not added to virial.

cylinder
Designed for pulling with respect to a layer where the reference COM is given by
a local cylindrical part of the reference group. The pulling is in the direction of
pull-vec. From the reference group a cylinder is selected around the axis go-
ing through the pull group with direction pull-vec using two radii. The radius
pull-r1 gives the radius within which all the relative weights are one, between
pull-r1 and pull-r0 the weights are switched to zero. Mass weighting is also
used. Note that the radii should be smaller than half the box size. For tilted cylinders
they should be even smaller than half the box size since the distance of an atom in
the reference group from the COM of the pull group has both a radial and an axial
component.

pull-dim: (Y Y Y)
the distance components to be used with geometry distance, and also sets which com-
ponents are printed to the output files

pull-r1: (1) [nm]
the inner radius of the cylinder for geometry cylinder

pull-r0: (1) [nm]
the outer radius of the cylinder for geometry cylinder

pull-constr-tol: (1e-6)
the relative constraint tolerance for constraint pulling

pull-start:

no
do not modify pull-init

yes
add the COM distance of the starting conformation to pull-init

pull-print-reference: (10)

no
do not print the COM of the first group in each pull coordinate

yes
print the COM of the first group in each pull coordinate
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pull-nstxout: (10)
frequency for writing out the COMs of all the pull group

pull-nstfout: (1)
frequency for writing out the force of all the pulled group

pull-ngroups: (1)
The number of pull groups, not including the absolute reference group, when used. Pull
groups can be reused in multiple pull coordinates. Below only the pull options for group 1
are given, further groups simply increase the group index number.

pull-ncoords: (1)
The number of pull coordinates. Below only the pull options for coordinate 1 are given,
further coordinates simply increase the coordinate index number.

pull-group1-name:
The name of the pull group, is looked up in the index file or in the default groups to obtain
the atoms involved.

pull-group1-weights:
Optional relative weights which are multiplied with the masses of the atoms to give the total
weight for the COM. The number should be 0, meaning all 1, or the number of atoms in the
pull group.

pull-group1-pbcatom: (0)
The reference atom for the treatment of periodic boundary conditions inside the group (this
has no effect on the treatment of the pbc between groups). This option is only important
when the diameter of the pull group is larger than half the shortest box vector. For deter-
mining the COM, all atoms in the group are put at their periodic image which is closest to
pull-group1-pbcatom. A value of 0 means that the middle atom (number wise) is
used. This parameter is not used with geometry cylinder. A value of -1 turns on cosine
weighting, which is useful for a group of molecules in a periodic system, e.g. a water slab
(see Engin et al. J. Chem. Phys. B 2010).

pull-coord1-groups:
The two groups indices should be given on which this pull coordinate will operate. The first
index can be 0, in which case an absolute reference of pull-coord1-origin is used.
With an absolute reference the system is no longer translation invariant and one should think
about what to do with the center of mass motion.

pull-coord1-origin: (0.0 0.0 0.0)
The pull reference position for use with an absolute reference.

pull-coord1-vec: (0.0 0.0 0.0)
The pull direction. grompp normalizes the vector.

pull-coord1-init: (0.0) [nm]
The reference distance at t=0.
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pull-coord1-rate: (0) [nm/ps]
The rate of change of the reference position.

pull-coord1-k: (0) [kJ mol−1 nm−2 / [kJ mol−1 nm−1]]
The force constant. For umbrella pulling this is the harmonic force constant in [kJ mol−1

nm−2]. For constant force pulling this is the force constant of the linear potential, and thus
minus (!) the constant force in [kJ mol−1 nm−1].

pull-coord1-kB: (pull-k1) [kJ mol−1 nm−2 / [kJ mol−1 nm−1]]
As pull-coord1-k, but for state B. This is only used when free-energy is turned on.
The force constant is then (1 - lambda)*pull-coord1-k + lambda*pull-coord1-kB.

7.3.22 NMR refinement

disre:

no
ignore distance restraint information in topology file

simple
simple (per-molecule) distance restraints.

ensemble
distance restraints over an ensemble of molecules in one simulation box. Normally,
one would perform ensemble averaging over multiple subsystems, each in a separate
box, using mdrun -multi;s upply topol0.tpr, topol1.tpr, ... with different
coordinates and/or velocities. The environment variable GMX_DISRE_ENSEMBLE_-
SIZE sets the number of systems within each ensemble (usually equal to the mdrun
-multi value).

disre-weighting:

equal (default)
divide the restraint force equally over all atom pairs in the restraint

conservative
the forces are the derivative of the restraint potential, this results in an r−7 weighting
of the atom pairs. The forces are conservative when disre-tau is zero.

disre-mixed:

no
the violation used in the calculation of the restraint force is the time-averaged violation

yes
the violation used in the calculation of the restraint force is the square root of the
product of the time-averaged violation and the instantaneous violation

disre-fc: (1000) [kJ mol−1 nm−2]
force constant for distance restraints, which is multiplied by a (possibly) different factor for
each restraint given in the fac column of the interaction in the topology file.
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disre-tau: (0) [ps]
time constant for distance restraints running average. A value of zero turns off time averag-
ing.

nstdisreout: (100) [steps]
period between steps when the running time-averaged and instantaneous distances of all
atom pairs involved in restraints are written to the energy file (can make the energy file very
large)

orire:

no
ignore orientation restraint information in topology file

yes
use orientation restraints, ensemble averaging can be performed with mdrun -multi

orire-fc: (0) [kJ mol]
force constant for orientation restraints, which is multiplied by a (possibly) different weight
factor for each restraint, can be set to zero to obtain the orientations from a free simulation

orire-tau: (0) [ps]
time constant for orientation restraints running average. A value of zero turns off time
averaging.

orire-fitgrp:
fit group for orientation restraining. This group of atoms is used to determine the rotation
R of the system with respect to the reference orientation. The reference orientation is the
starting conformation of the first subsystem. For a protein, backbone is a reasonable choice

nstorireout: (100) [steps]
period between steps when the running time-averaged and instantaneous orientations for all
restraints, and the molecular order tensor are written to the energy file (can make the energy
file very large)

7.3.23 Free energy calculations

free-energy:

no
Only use topology A.

yes
Interpolate between topology A (lambda=0) to topology B (lambda=1) and write the
derivative of the Hamiltonian with respect to lambda (as specified with dhdl-derivatives),
or the Hamiltonian differences with respect to other lambda values (as specified with
foreign-lambda) to the energy file and/or to dhdl.xvg, where they can be pro-
cessed by, for example g_bar. The potentials, bond-lengths and angles are inter-
polated linearly as described in the manual. When sc-alpha is larger than zero,
soft-core potentials are used for the LJ and Coulomb interactions.
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expanded
Turns on expanded ensemble simulation, where the alchemical state becomes a dy-
namic variable, allowing jumping between different Hamiltonians. See the expanded
ensemble options for controlling how expanded ensemble simulations are performed.
The different Hamiltonians used in expanded ensemble simulations are defined by the
other free energy options.

init-lambda: (-1)
starting value for lambda (float). Generally, this should only be used with slow growth (i.e.
nonzero delta-lambda). In other cases, init-lambda-state should be specified
instead. Must be greater than or equal to 0.

delta-lambda: (0)
increment per time step for lambda

init-lambda-state: (-1)
starting value for the lambda state (integer). Specifies which columm of the lambda vec-
tor (coul-lambdas, vdw-lambdas, bonded-lambdas, restraint-lambdas,
mass-lambdas, temperature-lambdas, fep-lambdas) should be used. This is
a zero-based index: init-lambda-state 0 means the first column, and so on.

fep-lambdas: ()
Zero, one or more lambda values for which Delta H values will be determined and written to
dhdl.xvg every nstdhdl steps. Values must be between 0 and 1. Free energy differences
between different lambda values can then be determined with g_bar. fep-lambdas is
different from the other -lambdas keywords because all components of the lambda vector
that are not specified will use fep-lambdas (including restraint-lambdas and therefore
the pull code restraints).

coul-lambdas: ()
Zero, one or more lambda values for which Delta H values will be determined and written
to dhdl.xvg every nstdhdl steps. Values must be between 0 and 1. Only the electro-
static interactions are controlled with this component of the lambda vector (and only if the
lambda=0 and lambda=1 states have differing electrostatic interactions).

vdw-lambdas: ()
Zero, one or more lambda values for which Delta H values will be determined and written
to dhdl.xvg every nstdhdl steps. Values must be between 0 and 1. Only the van der Waals
interactions are controlled with this component of the lambda vector.

bonded-lambdas: ()
Zero, one or more lambda values for which Delta H values will be determined and written
to dhdl.xvg every nstdhdl steps. Values must be between 0 and 1. Only the bonded
interactions are controlled with this component of the lambda vector.

restraint-lambdas: ()
Zero, one or more lambda values for which Delta H values will be determined and written to
dhdl.xvg every nstdhdl steps. Values must be between 0 and 1. Only the restraint inter-
actions: dihedral restraints, and the pull code restraints are controlled with this component
of the lambda vector.
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mass-lambdas: ()
Zero, one or more lambda values for which Delta H values will be determined and written to
dhdl.xvg every nstdhdl steps. Values must be between 0 and 1. Only the particle masses
are controlled with this component of the lambda vector.

temperature-lambdas: ()
Zero, one or more lambda values for which Delta H values will be determined and written
to dhdl.xvg every nstdhdl steps. Values must be between 0 and 1. Only the temperatures
controlled with this component of the lambda vector. Note that these lambdas should not be
used for replica exchange, only for simulated tempering.

calc-lambda-neighbors (1)
Controls the number of lambda values for which Delta H values will be calculated and writ-
ten out, if init-lambda-state has been set. A positive value will limit the number of
lambda points calculated to only the nth neighbors of init-lambda-state: for exam-
ple, if init-lambda-state is 5 and this parameter has a value of 2, energies for lambda
points 3-7 will be calculated and writen out. A value of -1 means all lambda points will be
written out. For normal BAR such as with g bar, a value of 1 is sufficient, while for MBAR
-1 should be used.

sc-alpha: (0)
the soft-core alpha parameter, a value of 0 results in linear interpolation of the LJ and
Coulomb interactions

sc-r-power: (6)
the power of the radial term in the soft-core equation. Possible values are 6 and 48. 6 is
more standard, and is the default. When 48 is used, then sc-alpha should generally be much
lower (between 0.001 and 0.003).

sc-coul: (no)
Whether to apply the soft core free energy interaction transformation to the Columbic inter-
action of a molecule. Default is no, as it is generally more efficient to turn off the Coulomic
interactions linearly before turning off the van der Waals interactions.

sc-power: (0)
the power for lambda in the soft-core function, only the values 1 and 2 are supported

sc-sigma: (0.3) [nm]
the soft-core sigma for particles which have a C6 or C12 parameter equal to zero or a sigma
smaller than sc-sigma

couple-moltype:
Here one can supply a molecule type (as defined in the topology) for calculating solvation
or coupling free energies. There is a special option system that couples all molecule types
in the system. This can be useful for equilibrating a system starting from (nearly) random
coordinates. free-energy has to be turned on. The Van der Waals interactions and/or
charges in this molecule type can be turned on or off between lambda=0 and lambda=1,
depending on the settings of couple-lambda0 and couple-lambda1. If you want to
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decouple one of several copies of a molecule, you need to copy and rename the molecule
definition in the topology.

couple-lambda0:

vdw-q
all interactions are on at lambda=0

vdw
the charges are zero (no Coulomb interactions) at lambda=0

q
the Van der Waals interactions are turned at lambda=0; soft-core interactions will be
required to avoid singularities

none
the Van der Waals interactions are turned off and the charges are zero at lambda=0;
soft-core interactions will be required to avoid singularities.

couple-lambda1:
analogous to couple-lambda1, but for lambda=1

couple-intramol:

no
All intra-molecular non-bonded interactions for moleculetype couple-moltype
are replaced by exclusions and explicit pair interactions. In this manner the decou-
pled state of the molecule corresponds to the proper vacuum state without periodicity
effects.

yes
The intra-molecular Van der Waals and Coulomb interactions are also turned on/off.
This can be useful for partitioning free-energies of relatively large molecules, where
the intra-molecular non-bonded interactions might lead to kinetically trapped vacuum
conformations. The 1-4 pair interactions are not turned off.

nstdhdl: (100)
the frequency for writing dH/dlambda and possibly Delta H to dhdl.xvg, 0 means no ouput,
should be a multiple of nstcalcenergy.

dhdl-derivatives: (yes)
If yes (the default), the derivatives of the Hamiltonian with respect to lambda at each
nstdhdl step are written out. These values are needed for interpolation of linear energy
differences with g_bar (although the same can also be achieved with the right foreign
lambda setting, that may not be as flexible), or with thermodynamic integration

dhdl-print-energy: (no)
Include either the total or the potential energy in the dhdl file. Options are ’no’, ’potential’,
or ’total’. This information is needed for later free energy analysis if the states of interest
are at different temperatures. If all states are at the same temperature, this information
is not needed. ’potential’ is useful in case one is using mdrun -rerun to generate the
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dhdl.xvg file. When rerunning from an existing trajectory, the kinetic energy will often
not be correct, and thus one must compute the residual free energy from the potential alone,
with the kinetic energy component computed analytically.

separate-dhdl-file: (yes)

yes
the free energy values that are calculated (as specified with the foreign-lambda
and dhdl-derivatives settings) are written out to a separate file, with the default
name dhdl.xvg. This file can be used directly with g_bar.

no
The free energy values are written out to the energy output file (ener.edr, in accu-
mulated blocks at every nstenergy steps), where they can be extracted with g_-
energy or used directly with g_bar.

dh-hist-size: (0)
If nonzero, specifies the size of the histogram into which the Delta H values (specified with
foreign-lambda) and the derivative dH/dl values are binned, and written to ener.edr.
This can be used to save disk space while calculating free energy differences. One histogram
gets written for each foreign lambda and two for the dH/dl, at every nstenergy step.
Be aware that incorrect histogram settings (too small size or too wide bins) can introduce
errors. Do not use histograms unless you’re certain you need it.

dh-hist-spacing (0.1)
Specifies the bin width of the histograms, in energy units. Used in conjunction with dh-hist-size.
This size limits the accuracy with which free energies can be calculated. Do not use his-
tograms unless you’re certain you need it.

7.3.24 Expanded Ensemble calculations

nstexpanded
The number of integration steps beween attempted moves changing the system Hamiltonian
in expanded ensemble simulations. Must be a multiple of nstcalcenergy, but can be
greater or less than nstdhdl.

lmc-stats:

no
No Monte Carlo in state space is performed.

metropolis-transition
Uses the Metropolis weights to update the expanded ensemble weight of each state.
Min1,exp(-(beta new u new - beta old u old)

barker-transition
Uses the Barker transition critera to update the expanded ensemble weight of each
state i, defined by exp(-beta new u new)/[exp(-beta new u new)+exp(-beta old u old)
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wang-landau
Uses the Wang-Landau algorithm (in state space, not energy space) to update the ex-
panded ensemble weights.

min-variance
Uses the minimum variance updating method of Escobedo et al. to update the ex-
panded ensemble weights. Weights will not be the free energies, but will rather em-
phasize states that need more sampling to give even uncertainty.

lmc-mc-move:

no
No Monte Carlo in state space is performed.

metropolis-transition
Randomly chooses a new state up or down, then uses the Metropolis critera to decide
whether to accept or reject: Min1,exp(-(beta new u new - beta old u old)

barker-transition
Randomly chooses a new state up or down, then uses the Barker transition critera to de-
cide whether to accept or reject: exp(-beta new u new)/[exp(-beta new u new)+exp(-
beta old u old)]

gibbs
Uses the conditional weights of the state given the coordinate (exp(-beta i u i) / sum k
exp(beta i u i) to decide which state to move to.

metropolized-gibbs

Uses the conditional weights of the state given the coordinate (exp(-beta i u i) / sum -
k exp(beta i u i) to decide which state to move to, EXCLUDING the current state,
then uses a rejection step to ensure detailed balance. Always more efficient that Gibbs,
though only marginally so in many situations, such as when only the nearest neighbors
have decent phase space overlap.

lmc-seed: (-1)
random seed to use for Monte Carlo moves in state space. When lmc-seed is set to -1, a
pseudo random seed is us

mc-temperature:
Temperature used for acceptance/rejection for Monte Carlo moves. If not specified, the
temperature of the simulation specified in the first group of ref_t is used.

wl-ratio: (0.8)
The cutoff for the histogram of state occupancies to be reset, and the free energy incrementor
to be reset as delta -¿ delta*wl-scale. If we define the Nratio = (number of samples at each
histogram) / (average number of samples at each histogram). wl-ratio of 0.8 means that
means that the histogram is only considered flat if all Nratio > 0.8 AND simultaneously all
1/Nratio > 0.8.
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wl-scale: (0.8)
Each time the histogram is considered flat, then the current value of the Wang-Landau in-
crementor for the free energies is multiplied by wl-scale. Value must be between 0 and
1.

init-wl-delta: (1.0)
The initial value of the Wang-Landau incrementor in kT. Some value near 1 kT is usually
most efficient, though sometimes a value of 2-3 in units of kT works better if the free energy
differences are large.

wl-oneovert: (no)
Set Wang-Landau incrementor to scale with 1/(simulation time) in the large sample limit.
There is significant evidence that the standard Wang-Landau algorithms in state space pre-
sented here result in free energies getting ’burned in’ to incorrect values that depend on the
initial state. when wl-oneovert is true, then when the incrementor becomes less than
1/N, where N is the mumber of samples collected (and thus proportional to the data collec-
tion time, hence ’1 over t’), then the Wang-Lambda incrementor is set to 1/N, decreasing
every step. Once this occurs, wl-ratio is ignored, but the weights will still stop updating
when the equilibration criteria set in lmc-weights-equil is achieved.

lmc-repeats: (1)
Controls the number of times that each Monte Carlo swap type is performed each iteration.
In the limit of large numbers of Monte Carlo repeats, then all methods converge to Gibbs
sampling. The value will generally not need to be different from 1.

lmc-gibbsdelta: (-1)
Limit Gibbs sampling to selected numbers of neighboring states. For Gibbs sampling, it is
sometimes inefficient to perform Gibbs sampling over all of the states that are defined. A
positive value of lmc-gibbsdeltameans that only states plus or minus lmc-gibbsdelta
are considered in exchanges up and down. A value of -1 means that all states are considered.
For less than 100 states, it is probably not that expensive to include all states.

lmc-forced-nstart: (0)
Force initial state space sampling to generate weights. In order to come up with reasonable
initial weights, this setting allows the simulation to drive from the initial to the final lambda
state, with lmc-forced-nstart steps at each state before moving on to the next lambda
state. If lmc-forced-nstart is sufficiently long (thousands of steps, perhaps), then the
weights will be close to correct. However, in most cases, it is probably better to simply run
the standard weight equilibration algorithms.

nst-transition-matrix: (-1)
Frequency of outputting the expanded ensemble transition matrix. A negative number means
it will only be printed at the end of the simulation.

symmetrized-transition-matrix: (no)
Whether to symmetrize the empirical transition matrix. In the infinite limit the matrix will be
symmetric, but will diverge with statistical noise for short timescales. Forced symmetriza-
tion, by using the matrix T sym = 1/2 (T + transpose(T)), removes problems like the exis-
tence of (small magnitude) negative eigenvalues.
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mininum-var-min: (100)
The min-variance strategy (option of lmc-stats is only valid for larger number of
samples, and can get stuck if too few samples are used at each state. mininum-var-min
is the minimum number of samples that each state that are allowed before the min-variance
strategy is activated if selected.

init-lambda-weights:
The initial weights (free energies) used for the expanded ensemble states. Default is a vector
of zero weights. format is similar to the lambda vector settings in fep-lambdas, except
the weights can be any floating point number. Units are kT. Its length must match the lambda
vector lengths.

lmc-weights-equil: (no)

no
Expanded ensemble weights continue to be updated throughout the simulation.

yes
The input expanded ensemble weights are treated as equilibrated, and are not updated
throughout the simulation.

wl-delta
Expanded ensemble weight updating is stopped when the Wang-Landau incrementor
falls below the value specified by weight-equil-wl-delta.

number-all-lambda
Expanded ensemble weight updating is stopped when the number of samples at all of
the lambda states is greater than the value specified by weight-equil-number-all-lambda.

number-steps
Expanded ensemble weight updating is stopped when the number of steps is greater
than the level specified by weight-equil-number-steps.

number-samples
Expanded ensemble weight updating is stopped when the number of total samples
across all lambda states is greater than the level specified by weight-equil-number-samples.

count-ratio
Expanded ensemble weight updating is stopped when the ratio of samples at the least
sampled lambda state and most sampled lambda state greater than the value specified
by weight-equil-count-ratio.

simulated-tempering: (no)
Turn simulated tempering on or off. Simulated tempering is implemented as expanded
ensemble sampling with different temperatures instead of different Hamiltonians.

sim-temp-low: (300)
Low temperature for simulated tempering.

sim-temp-high: (300)
High temperature for simulated tempering.
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simulated-tempering-scaling: (linear)
Controls the way that the temperatures at intermediate lambdas are calculated from the
temperature-lambda part of the lambda vector.
linear

Linearly interpolates the temperatures using the values of temperature-lambda,i.e.
if sim-temp-low=300, sim-temp-high=400, then lambda=0.5 correspond to a
temperature of 350. A nonlinear set of temperatures can always be implemented with
uneven spacing in lambda.

geometric
Interpolates temperatures geometrically between sim-temp-low and sim-temp-high.
The i:th state has temperature sim-temp-low * (sim-temp-high/sim-temp-low)
raised to the power of (i/(ntemps-1)). This should give roughly equal exchange for
constant heat capacity, though of course things simulations that involve protein fold-
ing have very high heat capacity peaks.

exponential
Interpolates temperatures exponentially between sim-temp-low and sim-temp-high.
The ith state has temperature sim-temp-low + (sim-temp-high-sim-temp-low)*((exp(temperature-lambdas[i])-
1)/(exp(1.0)-1)).

7.3.25 Non-equilibrium MD

acc-grps:
groups for constant acceleration (e.g.: Protein Sol) all atoms in groups Protein and Sol
will experience constant acceleration as specified in the accelerate line

accelerate: (0) [nm ps−2]
acceleration for acc-grps; x, y and z for each group (e.g. 0.1 0.0 0.0 -0.1 0.0
0.0 means that first group has constant acceleration of 0.1 nm ps−2 in X direction, second
group the opposite).

freezegrps:
Groups that are to be frozen (i.e. their X, Y, and/or Z position will not be updated; e.g.
Lipid SOL). freezedim specifies for which dimension the freezing applies. To avoid
spurious contibrutions to the virial and pressure due to large forces between completely
frozen atoms you need to use energy group exclusions, this also saves computing time.
Note that coordinates of frozen atoms are not scaled by pressure-coupling algorithms.

freezedim:
dimensions for which groups in freezegrps should be frozen, specify Y or N for X, Y
and Z and for each group (e.g. Y Y N N N N means that particles in the first group can
move only in Z direction. The particles in the second group can move in any direction).

cos-acceleration: (0) [nm ps−2]
the amplitude of the acceleration profile for calculating the viscosity. The acceleration is
in the X-direction and the magnitude is cos-acceleration cos(2 pi z/boxheight). Two
terms are added to the energy file: the amplitude of the velocity profile and 1/viscosity.
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deform: (0 0 0 0 0 0) [nm ps−1]
The velocities of deformation for the box elements: a(x) b(y) c(z) b(x) c(x) c(y). Each step
the box elements for which deform is non-zero are calculated as: box(ts)+(t-ts)*deform,
off-diagonal elements are corrected for periodicity. The coordinates are transformed accord-
ingly. Frozen degrees of freedom are (purposely) also transformed. The time ts is set to t at
the first step and at steps at which x and v are written to trajectory to ensure exact restarts.
Deformation can be used together with semiisotropic or anisotropic pressure coupling when
the appropriate compressibilities are set to zero. The diagonal elements can be used to strain
a solid. The off-diagonal elements can be used to shear a solid or a liquid.

7.3.26 Electric fields

E-x ; E-y ; E-z:
If you want to use an electric field in a direction, enter 3 numbers after the appropriate E-*,
the first number: the number of cosines, only 1 is implemented (with frequency 0) so enter
1, the second number: the strength of the electric field in V nm−1, the third number: the
phase of the cosine, you can enter any number here since a cosine of frequency zero has no
phase.

E-xt; E-yt; E-zt:
not implemented yet

¡h3¿Mixed quantum/classical molecular dynamics¡!–QuietIdx¿QM/MM¡!–EQuietIdx–¿¡/h3¿

QMMM:

no
No QM/MM.

yes
Do a QM/MM simulation. Several groups can be described at different QM levels sep-
arately. These are specified in the QMMM-grps field separated by spaces. The level of
¡i¿ab initio¡/i¿ theory at which the groups are described is specified by QMmethod and
QMbasis Fields. Describing the groups at different levels of theory is only possible
with the ONIOM QM/MM scheme, specified by QMMMscheme.

QMMM-grps:
groups to be descibed at the QM level

QMMMscheme:

normal
normal QM/MM. There can only be one QMMM-grps that is modelled at the QMmethod
and QMbasis level of ab initio theory. The rest of the system is described at the
MM level. The QM and MM subsystems interact as follows: MM point charges are
included in the QM one-electron hamiltonian and all Lennard-Jones interactions are
described at the MM level.
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ONIOM
The interaction between the subsystem is described using the ONIOM method by Mo-
rokuma and co-workers. There can be more than one QMMM-grps each modeled at a
different level of QM theory (QMmethod and QMbasis).

QMmethod: (RHF)
Method used to compute the energy and gradients on the QM atoms. Available methods are
AM1, PM3, RHF, UHF, DFT, B3LYP, MP2, CASSCF, and MMVB. For CASSCF, the num-
ber of electrons and orbitals included in the active space is specified by CASelectrons
and CASorbitals.

QMbasis: (STO-3G)
Basis set used to expand the electronic wavefuntion. Only Gaussian basis sets are currently
available, i.e. STO-3G, 3-21G, 3-21G*, 3-21+G*, 6-21G, 6-31G, 6-31G*, 6-31+G*, and
6-311G.

QMcharge: (0) [integer]
The total charge in e of the QMMM-grps. In case there are more than one QMMM-grps,
the total charge of each ONIOM layer needs to be specified separately.

QMmult: (1) [integer]
The multiplicity of the QMMM-grps. In case there are more than one QMMM-grps, the
multiplicity of each ONIOM layer needs to be specified separately.

CASorbitals: (0) [integer]
The number of orbitals to be included in the active space when doing a CASSCF computa-
tion.

CASelectrons: (0) [integer]
The number of electrons to be included in the active space when doing a CASSCF compu-
tation.

SH:

no
No surface hopping. The system is always in the electronic ground-state.

yes
Do a QM/MM MD simulation on the excited state-potential energy surface and en-
force a diabatic hop to the ground-state when the system hits the conical intersection
hyperline in the course the simulation. This option only works in combination with
the CASSCF method.

7.3.27 Implicit solvent

implicit-solvent:

no
No implicit solvent
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GBSA
Do a simulation with implicit solvent using the Generalized Born formalism. Three
different methods for calculating the Born radii are available, Still, HCT and OBC.
These are specified with the gb-algorithm field. The non-polar solvation is speci-
fied with the sa-algorithm field.

gb-algorithm:

Still
Use the Still method to calculate the Born radii

HCT
Use the Hawkins-Cramer-Truhlar method to calculate the Born radii

OBC
Use the Onufriev-Bashford-Case method to calculate the Born radii

nstgbradii: (1) [steps]
Frequency to (re)-calculate the Born radii. For most practial purposes, setting a value larger
than 1 violates energy conservation and leads to unstable trajectories.

rgbradii: (1.0) [nm]
Cut-off for the calculation of the Born radii. Currently must be equal to rlist

gb-epsilon-solvent: (80)
Dielectric constant for the implicit solvent

gb-saltconc: (0) [M]
Salt concentration for implicit solvent models, currently not used

gb-obc-alpha (1); gb-obc-beta (0.8); gb-obc-gamma (4.85);
Scale factors for the OBC model. Default values are OBC(II). Values for OBC(I) are 0.8, 0
and 2.91 respectively

gb-dielectric-offset: (0.009) [nm]
Distance for the di-electric offset when calculating the Born radii. This is the offset between
the center of each atom the center of the polarization energy for the corresponding atom

sa-algorithm

Ace-approximation
Use an Ace-type approximation (default)

None
No non-polar solvation calculation done. For GBSA only the polar part gets calculated

sa-surface-tension: [kJ mol−1 nm−2]
Default value for surface tension with SA algorithms. The default value is -1; Note that
if this default value is not changed it will be overridden by grompp using values that
are specific for the choice of radii algorithm (0.0049 kcal/mol/Angstrom2 for Still, 0.0054
kcal/mol/Angstrom2 for HCT/OBC) Setting it to 0 will while using an sa-algorithm other
than None means no non-polar calculations are done.
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7.3.28 Adaptive Resolution Simulation

adress: (no)
Decide whether the AdResS feature is turned on.

adress-type: (Off)

Off
Do an AdResS simulation with weight equal 1, which is equivalent to an explicit (nor-
mal) MD simulation. The difference to disabled AdResS is that the AdResS variables
are still read-in and hence are defined.

Constant
Do an AdResS simulation with a constant weight, adress-const-wf defines the
value of the weight

XSplit
Do an AdResS simulation with simulation box split in x-direction, so basically the
weight is only a function of the x coordinate and all distances are measured using the
x coordinate only.

Sphere
Do an AdResS simulation with spherical explicit zone.

adress-const-wf: (1)
Provides the weight for a constant weight simulation (adress-type=Constant)

adress-ex-width: (0)
Width of the explicit zone, measured from adress-reference-coords.

adress-hy-width: (0)
Width of the hybrid zone.

adress-reference-coords: (0,0,0)
Position of the center of the explicit zone. Periodic boundary conditions apply for measuring
the distance from it.

adress-cg-grp-names
The names of the coarse-grained energy groups. All other energy groups are considered
explicit and their interactions will be automatically excluded with the coarse-grained groups.

adress-site: (COM) The mapping point from which the weight is calculated.

COM
The weight is calculated from the center of mass of each charge group.

COG
The weight is calculated from the center of geometry of each charge group.

Atom
The weight is calculated from the position of 1st atom of each charge group.
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AtomPerAtom
The weight is calculated from the position of each individual atom.

adress-interface-correction: (Off)

Off
Do not a apply any interface correction.

thermoforce
Apply thermodynamic force interface correction. The table can be specified using the
-tabletf option of mdrun. The table should contain the potential and force (acting
on molecules) as function of the distance from adress-reference-coords.

adress-tf-grp-names
The names of the energy groups to which the thermoforce is applied if enabled in
adress-interface-correction. If no group is given the default table is applied.

adress-ex-forcecap: (0)
Cap the force in the hybrid region, useful for big molecules. 0 disables force capping.

7.3.29 User defined thingies

user1-grps; user2-grps:

userint1 (0); userint2 (0); userint3 (0); userint4 (0)

userreal1 (0); userreal2 (0); userreal3 (0); userreal4 (0)
These you can use if you modify code. You can pass integers and reals to your subroutine.
Check the inputrec definition in src/include/types/inputrec.h
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Chapter 8

Analysis

In this chapter different ways of analyzing your trajectory are described. The names of the cor-
responding analysis programs are given. Specific information on the in- and output of these pro-
grams can be found in the online manual at www.gromacs.org. The output files are often produced
as finished Grace/Xmgr graphs.

First, in sec. 8.1, the group concept in analysis is explained. 8.1.2 explains a newer concept of
dynamic selections, which is currently supported by a few tools. Then, the different analysis tools
are presented.

8.1 Using Groups

gmx make_ndx, gmx mk_angndx, gmx select
In chapter 3, it was explained how groups of atoms can be used in mdrun (see sec. 3.3). In most
analysis programs, groups of atoms must also be chosen. Most programs can generate several
default index groups, but groups can always be read from an index file. Let’s consider the example
of a simulation of a binary mixture of components A and B. When we want to calculate the radial
distribution function (RDF) gAB(r) of A with respect to B, we have to calculate:

4πr2gAB(r) = V
NA∑
i∈A

NB∑
j∈B

P (r) (8.1)

where V is the volume and P (r) is the probability of finding a B atom at distance r from an A
atom.

By having the user define the atom numbers for groups A and B in a simple file, we can calculate
this gAB in the most general way, without having to make any assumptions in the RDF program
about the type of particles.

Groups can therefore consist of a series of atom numbers, but in some cases also of molecule
numbers. It is also possible to specify a series of angles by triples of atom numbers, dihedrals
by quadruples of atom numbers and bonds or vectors (in a molecule) by pairs of atom numbers.

http://www.gromacs.org
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When appropriate the type of index file will be specified for the following analysis programs. To
help creating such index files (index.ndx), there are a couple of programs to generate them,
using either your input configuration or the topology. To generate an index file consisting of a
series of atom numbers (as in the example of gAB), use gmx make_ndx or gmx select. To
generate an index file with angles or dihedrals, use gmx mk_angndx. Of course you can also
make them by hand. The general format is presented here:

[ Oxygen ]
1 4 7

[ Hydrogen ]
2 3 5 6
8 9

First, the group name is written between square brackets. The following atom numbers may be
spread out over as many lines as you like. The atom numbering starts at 1.

Each tool that can use groups will offer the available alternatives for the user to choose. That
choice can be made with the number of the group, or its name. In fact, the first few letters of the
group name will suffice if that will distinguish the group from all others. There are ways to use
Unix shell features to choose group names on the command line, rather than interactively. Consult
www.gromacs.org for suggestions.

8.1.1 Default Groups

When no index file is supplied to analysis tools or grompp, a number of default groups are
generated to choose from:

System
all atoms in the system

Protein
all protein atoms

Protein-H
protein atoms excluding hydrogens

C-alpha
Cα atoms

Backbone
protein backbone atoms; N, Cα and C

MainChain
protein main chain atoms: N, Cα, C and O, including oxygens in C-terminus

MainChain+Cb
protein main chain atoms including Cβ

http://www.gromacs.org
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MainChain+H
protein main chain atoms including backbone amide hydrogens and hydrogens on the N-
terminus

SideChain
protein side chain atoms; that is all atoms except N, Cα, C, O, backbone amide hydrogens,
oxygens in C-terminus and hydrogens on the N-terminus

SideChain-H
protein side chain atoms excluding all hydrogens

Prot-Masses
protein atoms excluding dummy masses (as used in virtual site constructions of NH3 groups
and tryptophan side-chains), see also sec. 5.2.2; this group is only included when it differs
from the “Protein” group

Non-Protein
all non-protein atoms

DNA
all DNA atoms

RNA
all RNA atoms

Water
water molecules (names like SOL, WAT, HOH, etc.) See residuetypes.dat for a full
listing

non-Water
anything not covered by the Water group

Ion
any name matching an Ion entry in residuetypes.dat

Water_and_Ions
combination of the Water and Ions groups

molecule_name
for all residues/molecules which are not recognized as protein, DNA, or RNA; one group
per residue/molecule name is generated

Other
all atoms which are neither protein, DNA, nor RNA.

Empty groups will not be generated. Most of the groups only contain protein atoms. An atom is
considered a protein atom if its residue name is listed in the residuetypes.dat file and is
listed as a “Protein” entry. The process for determinding DNA, RNA, etc. is analogous. If you
need to modify these classifications, then you can copy the file from the library directory into your
working directory and edit the local copy.
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8.1.2 Selections

gmx select
Currently, a few analysis tools support an extended concept of (dynamic) selections. There are
three main differences to traditional index groups:

• The selections are specified as text instead of reading fixed atom indices from a file, using
a syntax similar to VMD. The text can be entered interactively, provided on the command
line, or from a file.

• The selections are not restricted to atoms, but can also specify that the analysis is to be
performed on, e.g., center-of-mass positions of a group of atoms. Some tools may not
support selections that do not evaluate to single atoms, e.g., if they require information that
is available only for single atoms, like atom names or types.

• The selections can be dynamic, i.e., evaluate to different atoms for different trajectory
frames. This allows analyzing only a subset of the system that satisfies some geometric
criteria.

As an example of a simple selection, resname ABC and within 2 of resname DEF
selects all atoms in residues named ABC that are within 2 nm of any atom in a residue named
DEF.

Tools that accept selections can also use traditional index files similarly to older tools: it is possible
to give an .ndx file to the tool, and directly select a group from the index file as a selection, either
by group number or by group name. The index groups can also be used as a part of a more
complicated selection.

To get started, you can run gmx select with a single structure, and use the interactive prompt
to try out different selections. The tool provides, among others, output options -on and -ofpdb
to write out the selected atoms to an index file and to a .pdb file, respectively. This does not allow
testing selections that evaluate to center-of-mass positions, but other selections can be tested and
the result examined.

The detailed syntax and the individual keywords that can be used in selections can be accessed by
typing help in the interactive prompt of any selection-enabled tool, as well as with gmx help
selections. The help is divided into subtopics that can be accessed with, e.g., help syntax
/ gmx help selections syntax. Some individual selection keywords have extended help
as well, which can be accessed with, e.g., help keywords within.

The interactive prompt does not currently provide much editing capabilities. If you need them,
you can run the program under rlwrap.

For tools that do not yet support the selection syntax, you can use gmx select -on to generate
static index groups to pass to the tool. However, this only allows for a small subset (only the first
bullet from the above list) of the flexibility that fully selection-aware tools offer.

It is also possible to write your own analysis tools to take advantage of the flexibility of these
selections: see the template.cpp file in the share/gromacs/template directory of your
installation for an example.
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Figure 8.1: The window of gmx view showing a box of water.

8.2 Looking at your trajectory

gmx view
Before analyzing your trajectory it is often informative to look at your trajectory first. GROMACS
comes with a simple trajectory viewer gmx view; the advantage with this one is that it does not
require OpenGL, which usually isn’t present on e.g. supercomputers. It is also possible to generate
a hard-copy in Encapsulated Postscript format (see Fig. 8.1). If you want a faster and more fancy
viewer there are several programs that can read the GROMACS trajectory formats – have a look
at our homepage (www.gromacs.org) for updated links.

8.3 General properties

gmx energy, gmx traj
To analyze some or all energies and other properties, such as total pressure, pressure tensor,
density, box-volume and box-sizes, use the program gmx energy. A choice can be made from
a list a set of energies, like potential, kinetic or total energy, or individual contributions, like
Lennard-Jones or dihedral energies.

The center-of-mass velocity, defined as

vcom =
1

M

N∑
i=1

mivi (8.2)

with M =
∑N
i=1mi the total mass of the system, can be monitored in time by the program gmx

traj -com -ov. It is however recommended to remove the center-of-mass velocity every step
(see chapter 3)!

http://www.gromacs.org


238 Chapter 8. Analysis

r

r+
dr

r+
dr

r
θ+

dθ
θ

e

A
BD

C

Figure 8.2: Definition of slices in gmx rdf: A. gAB(r). B. gAB(r, θ). The slices are colored gray.
C. Normalization 〈ρB〉local. D. Normalization 〈ρB〉local, θ. Normalization volumes are colored
gray.

8.4 Radial distribution functions

gmx rdf
The radial distribution function (RDF) or pair correlation function gAB(r) between particles of
type A and B is defined in the following way:

gAB(r) =
〈ρB(r)〉
〈ρB〉local

=
1

〈ρB〉local
1

NA

NA∑
i∈A

NB∑
j∈B

δ(rij − r)
4πr2

(8.3)

with 〈ρB(r)〉 the particle density of type B at a distance r around particles A, and 〈ρB〉local the
particle density of type B averaged over all spheres around particles A with radius rmax (see
Fig. 8.2C).

Usually the value of rmax is half of the box length. The averaging is also performed in time. In
practice the analysis program gmx rdf divides the system into spherical slices (from r to r+dr,
see Fig. 8.2A) and makes a histogram in stead of the δ-function. An example of the RDF of
oxygen-oxygen in SPC water [81] is given in Fig. 8.3.

With gmx rdf it is also possible to calculate an angle dependent rdf gAB(r, θ), where the angle
θ is defined with respect to a certain laboratory axis e, see Fig. 8.2B.

gAB(r, θ) =
1

〈ρB〉local, θ
1

NA

NA∑
i∈A

NB∑
j∈B

δ(rij − r)δ(θij − θ)
2πr2sin(θ)

(8.4)

cos(θij) =
rij · e
‖rij‖ ‖e‖

(8.5)
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Figure 8.3: gOO(r) for Oxygen-Oxygen of SPC-water.
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This gAB(r, θ) is useful for analyzing anisotropic systems. Note that in this case the normalization
〈ρB〉local, θ is the average density in all angle slices from θ to θ+dθ up to rmax, so angle dependent,
see Fig. 8.2D.

8.5 Correlation functions

8.5.1 Theory of correlation functions

The theory of correlation functions is well established [106]. We describe here the implementation
of the various correlation function flavors in the GROMACS code. The definition of the (ACF)
Cf (t) for a property f(t) is:

Cf (t) = 〈f(ξ)f(ξ + t)〉ξ (8.6)

where the notation on the right hand side indicates averaging over ξ, i.e. over time origins. It is
also possible to compute cross-correlation function from two properties f(t) and g(t):

Cfg(t) = 〈f(ξ)g(ξ + t)〉ξ (8.7)

however, in GROMACS there is no standard mechanism to do this (note: you can use the xmgr
program to compute cross correlations). The integral of the correlation function over time is the
correlation time τf :

τf =

∫ ∞
0

Cf (t)dt (8.8)

In practice, correlation functions are calculated based on data points with discrete time intervals
∆t, so that the ACF from an MD simulation is:

Cf (j∆t) =
1

N − j

N−1−j∑
i=0

f(i∆t)f((i+ j)∆t) (8.9)

whereN is the number of available time frames for the calculation. The resulting ACF is obviously
only available at time points with the same interval ∆t. Since, for many applications, it is necessary
to know the short time behavior of the ACF (e.g. the first 10 ps) this often means that we have to
save the data with intervals much shorter than the time scale of interest. Another implication of
eqn. 8.9 is that in principle we can not compute all points of the ACF with the same accuracy, since
we have N − 1 data points for Cf (∆t) but only 1 for Cf ((N − 1)∆t). However, if we decide to
compute only an ACF of length M∆t, where M ≤ N/2 we can compute all points with the same
statistical accuracy:

Cf (j∆t) =
1

M

N−1−M∑
i=0

f(i∆t)f((i+ j)∆t) (8.10)

Here of course j < M . M is sometimes referred to as the time lag of the correlation function.
When we decide to do this, we intentionally do not use all the available points for very short time
intervals (j << M ), but it makes it easier to interpret the results. Another aspect that may not be
neglected when computing ACFs from simulation is that usually the time origins ξ (eqn. 8.6) are
not statistically independent, which may introduce a bias in the results. This can be tested using a
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block-averaging procedure, where only time origins with a spacing at least the length of the time
lag are included, e.g. using k time origins with spacing of M∆t (where kM ≤ N ):

Cf (j∆t) =
1

k

k−1∑
i=0

f(iM∆t)f((iM + j)∆t) (8.11)

However, one needs very long simulations to get good accuracy this way, because there are many
fewer points that contribute to the ACF.

8.5.2 Using FFT for computation of the ACF

The computational cost for calculating an ACF according to eqn. 8.9 is proportional to N2, which
is considerable. However, this can be improved by using fast Fourier transforms to do the convo-
lution [106].

8.5.3 Special forms of the ACF

There are some important varieties on the ACF, e.g. the ACF of a vector p:

Cp(t) =

∫ ∞
0

Pn(cos 6 (p(ξ),p(ξ + t)) dξ (8.12)

where Pn(x) is the nth order Legendre polynomial 1. Such correlation times can actually be ob-
tained experimentally using e.g. NMR or other relaxation experiments. GROMACS can compute
correlations using the 1st and 2nd order Legendre polynomial (eqn. 8.12). This can also be used
for rotational autocorrelation (gmx rotacf) and dipole autocorrelation (gmx dipoles).

In order to study torsion angle dynamics, we define a dihedral autocorrelation function as [153]:

C(t) = 〈cos(θ(τ)− θ(τ + t))〉τ (8.13)

Note that this is not a product of two functions as is generally used for correlation functions, but
it may be rewritten as the sum of two products:

C(t) = 〈cos(θ(τ)) cos(θ(τ + t)) + sin(θ(τ)) sin(θ(τ + t))〉τ (8.14)

8.5.4 Some Applications

The program gmx velacc calculates the velocity autocorrelation function.

Cv(τ) = 〈vi(τ) · vi(0)〉i∈A (8.15)

The self diffusion coefficient can be calculated using the Green-Kubo relation [106]:

DA =
1

3

∫ ∞
0
〈vi(t) · vi(0)〉i∈A dt (8.16)

1P0(x) = 1, P1(x) = x, P2(x) = (3x2 − 1)/2
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which is just the integral of the velocity autocorrelation function. There is a widely-held belief
that the velocity ACF converges faster than the mean square displacement (sec. 8.6), which can
also be used for the computation of diffusion constants. However, Allen & Tildesley [106] warn
us that the long-time contribution to the velocity ACF can not be ignored, so care must be taken.

Another important quantity is the dipole correlation time. The dipole correlation function for
particles of type A is calculated as follows by gmx dipoles:

Cµ(τ) = 〈µi(τ) · µi(0)〉i∈A (8.17)

with µi =
∑
j∈i rjqj . The dipole correlation time can be computed using eqn. 8.8. For some

applications see [154].

The viscosity of a liquid can be related to the correlation time of the Pressure tensor P [155, 156].
gmx energy can compute the viscosity, but this is not very accurate [137], and actually the
values do not converge.

8.6 Mean Square Displacement

gmx msd
To determine the self DA of particles of type A, one can use the Einstein relation [106]:

lim
t→∞
〈‖ri(t)− ri(0)‖2〉i∈A = 6DAt (8.18)

This mean square displacement and DA are calculated by the program gmx msd. Normally
an index file containing atom numbers is used and the MSD is averaged over these atoms. For
molecules consisting of more than one atom, ri can be taken as the center of mass positions of
the molecules. In that case, you should use an index file with molecule numbers. The results will
be nearly identical to averaging over atoms, however. The gmx msd program can also be used
for calculating diffusion in one or two dimensions. This is useful for studying lateral diffusion on
interfaces.

An example of the mean square displacement of SPC water is given in Fig. 8.4.

8.7 Bonds/distances, angles and dihedrals

gmx distance, gmx angle, gmx gangle
To monitor specific bonds in your modules, or more generally distances between points, the pro-
gram gmx distance can calculate distances as a function of time, as well as the distribution of
the distance. With a traditional index file, the groups should consist of pairs of atom numbers, for
example:

[ bonds_1 ]
1 2
3 4
9 10
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Figure 8.4: Mean Square Displacement of SPC-water.

[ bonds_2 ]
12 13

Selections are also supported, with first two positions defining the first distance, second pair of
positions defining the second distance and so on. You can calculate the distances between CA and
CB atoms in all your residues (assuming that every residue either has both atoms, or neither) using
a selection such as:

name CA CB

The selections also allow more generic distances to be computed. For example, to compute the
distances between centers of mass of two residues, you can use:

com of resname AAA plus com of resname BBB

The program gmx angle calculates the distribution of angles and dihedrals in time. It also gives
the average angle or dihedral. The index file consists of triplets or quadruples of atom numbers:

[ angles ]
1 2 3
2 3 4
3 4 5

[ dihedrals ]
1 2 3 4
2 3 5 5

For the dihedral angles you can use either the “biochemical convention” (φ = 0 ≡ cis) or “poly-
mer convention” (φ = 0 ≡ trans), see Fig. 8.5.
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Figure 8.5: Dihedral conventions: A. “Biochemical convention”. B. “Polymer convention”.
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Figure 8.6: Angle options of gmx gangle: A. Angle between two vectors. B. Angle between
two planes. C. Angle between a vector and the z axis. D. Angle between a vector and the normal of
a sphere. Also other combinations are supported: planes and vectors can be used interchangeably.

The program gmx gangle provides a selection-enabled version to compute angles. This tool can
also compute angles and dihedrals, but does not support all the options of gmx angle, such as
autocorrelation or other time series analyses. In addition, it supports angles between two vectors,
a vector and a plane, two planes (defined by 2 or 3 points, respectively), a vector/plane and the
z axis, or a vector/plane and the normal of a sphere (determined by a single position). Also the
angle between a vector/plane compared to its position in the first frame is supported. For planes,
gmx gangle uses the normal vector perpendicular to the plane. See Fig. 8.6A, B, C) for the
definitions.

8.8 Radius of gyration and distances

gmx gyrate, gmx distance, gmx mindist, gmx mdmat, gmx xpm2ps
To have a rough measure for the compactness of a structure, you can calculate the radius of gyra-
tion with the program gmx gyrate as follows:

Rg =

(∑
i ‖ri‖2mi∑

imi

) 1
2

(8.19)

where mi is the mass of atom i and ri the position of atom i with respect to the center of mass of
the molecule. It is especially useful to characterize polymer solutions and proteins.

Sometimes it is interesting to plot the distance between two atoms, or the minimum distance be-
tween two groups of atoms (e.g.: protein side-chains in a salt bridge). To calculate these distances
between certain groups there are several possibilities:
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Figure 8.7: A minimum distance matrix for a peptide [157].

• The distance between the geometrical centers of two groups can be calculated with the program
gmx distance, as explained in sec. 8.7.

• The minimum distance between two groups of atoms during time can be calculated with the
program gmx mindist. It also calculates the number of contacts between these groups
within a certain radius rmax.

• To monitor the minimum distances between amino acid residues within a (protein) molecule,
you can use the program gmx mdmat. This minimum distance between two residues Ai

and Aj is defined as the smallest distance between any pair of atoms (i ∈ Ai, j ∈ Aj). The
output is a symmetrical matrix of smallest distances between all residues. To visualize this
matrix, you can use a program such as xv. If you want to view the axes and legend or if
you want to print the matrix, you can convert it with xpm2ps into a Postscript picture, see
Fig. 8.7.

Plotting these matrices for different time-frames, one can analyze changes in the structure,
and e.g. forming of salt bridges.

8.9 Root mean square deviations in structure

gmx rms, gmx rmsdist
The root mean square deviation (RMSD) of certain atoms in a molecule with respect to a refer-
ence structure can be calculated with the program gmx rms by least-square fitting the structure
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to the reference structure (t2 = 0) and subsequently calculating the RMSD (eqn. 8.20).

RMSD(t1, t2) =

[
1

M

N∑
i=1

mi‖ri(t1)− ri(t2)‖2
] 1

2

(8.20)

where M =
∑N
i=1mi and ri(t) is the position of atom i at time t. Note that fitting does not

have to use the same atoms as the calculation of the RMSD; e.g. a protein is usually fitted on
the backbone atoms (N,Cα,C), but the RMSD can be computed of the backbone or of the whole
protein.

Instead of comparing the structures to the initial structure at time t = 0 (so for example a crystal
structure), one can also calculate eqn. 8.20 with a structure at time t2 = t1 − τ . This gives some
insight in the mobility as a function of τ . A matrix can also be made with theRMSD as a function
of t1 and t2, which gives a nice graphical interpretation of a trajectory. If there are transitions in a
trajectory, they will clearly show up in such a matrix.

Alternatively theRMSD can be computed using a fit-free method with the program gmx rmsdist:

RMSD(t) =

 1

N2

N∑
i=1

N∑
j=1

‖rij(t)− rij(0)‖2
 1

2

(8.21)

where the distance rij between atoms at time t is compared with the distance between the same
atoms at time 0.

8.10 Covariance analysis

Covariance analysis, also called principal component analysis or essential dynamics [158], can
find correlated motions. It uses the covariance matrix C of the atomic coordinates:

Cij =

〈
M

1
2
ii (xi − 〈xi〉)M

1
2
jj(xj − 〈xj〉)

〉
(8.22)

where M is a diagonal matrix containing the masses of the atoms (mass-weighted analysis) or
the unit matrix (non-mass weighted analysis). C is a symmetric 3N × 3N matrix, which can be
diagonalized with an orthonormal transformation matrix R:

RTCR = diag(λ1, λ2, . . . , λ3N ) where λ1 ≥ λ2 ≥ . . . ≥ λ3N (8.23)

The columns of R are the eigenvectors, also called principal or essential modes. R defines a
transformation to a new coordinate system. The trajectory can be projected on the principal modes
to give the principal components pi(t):

p(t) = RTM
1
2 (x(t)− 〈x〉) (8.24)

The eigenvalue λi is the mean square fluctuation of principal component i. The first few principal
modes often describe collective, global motions in the system. The trajectory can be filtered along
one (or more) principal modes. For one principal mode i this goes as follows:

xf (t) = 〈x〉+M−
1
2R∗i pi(t) (8.25)
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When the analysis is performed on a macromolecule, one often wants to remove the overall rota-
tion and translation to look at the internal motion only. This can be achieved by least square fitting
to a reference structure. Care has to be taken that the reference structure is representative for the
ensemble, since the choice of reference structure influences the covariance matrix.

One should always check if the principal modes are well defined. If the first principal component
resembles a half cosine and the second resembles a full cosine, you might be filtering noise (see
below). A good way to check the relevance of the first few principal modes is to calculate the
overlap of the sampling between the first and second half of the simulation. Note that this can
only be done when the same reference structure is used for the two halves.

A good measure for the overlap has been defined in [159]. The elements of the covariance matrix
are proportional to the square of the displacement, so we need to take the square root of the matrix
to examine the extent of sampling. The square root can be calculated from the eigenvalues λi and
the eigenvectors, which are the columns of the rotation matrixR. For a symmetric and diagonally-
dominant matrix A of size 3N × 3N the square root can be calculated as:

A
1
2 = R diag(λ

1
2
1 , λ

1
2
2 , . . . , λ

1
2
3N )RT (8.26)

It can be verified easily that the product of this matrix with itself gives A. Now we can define a
difference d between covariance matrices A and B as follows:

d(A,B) =

√
tr
((
A

1
2 −B

1
2

)2
)

(8.27)

=

√
tr
(
A+B − 2A

1
2B

1
2

)
(8.28)

=

 N∑
i=1

(
λAi + λBi

)
− 2

N∑
i=1

N∑
j=1

√
λAi λ

B
j

(
RAi ·RBj

)2

 1
2

(8.29)

where tr is the trace of a matrix. We can now define the overlap s as:

s(A,B) = 1− d(A,B)√
trA+ trB

(8.30)

The overlap is 1 if and only if matrices A and B are identical. It is 0 when the sampled subspaces
are completely orthogonal.

A commonly-used measure is the subspace overlap of the first few eigenvectors of covariance
matrices. The overlap of the subspace spanned by m orthonormal vectors w1, . . . ,wm with a
reference subspace spanned by n orthonormal vectors v1, . . . ,vn can be quantified as follows:

overlap(v,w) =
1

n

n∑
i=1

m∑
j=1

(vi ·wj)
2 (8.31)

The overlap will increase with increasing m and will be 1 when set v is a subspace of set w.
The disadvantage of this method is that it does not take the eigenvalues into account. All eigen-
vectors are weighted equally, and when degenerate subspaces are present (equal eigenvalues), the
calculated overlap will be too low.
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Another useful check is the cosine content. It has been proven that the the principal components
of random diffusion are cosines with the number of periods equal to half the principal component
index [160, 159]. The eigenvalues are proportional to the index to the power −2. The cosine
content is defined as:

2

T

(∫ T

0
cos

(
iπt

T

)
pi(t)dt

)2(∫ T

0
p2
i (t)dt

)−1

(8.32)

When the cosine content of the first few principal components is close to 1, the largest fluctuations
are not connected with the potential, but with random diffusion.

The covariance matrix is built and diagonalized by gmx covar. The principal components and
overlap (and many more things) can be plotted and analyzed with gmx anaeig. The cosine
content can be calculated with gmx analyze.

8.11 Dihedral principal component analysis

gmx angle, gmx covar, gmx anaeig
Principal component analysis can be performed in dihedral space [161] using GROMACS. You
start by defining the dihedral angles of interest in an index file, either using gmx mk_angndx
or otherwise. Then you use the gmx angle program with the -or flag to produce a new .trr
file containing the cosine and sine of each dihedral angle in two coordinates, respectively. That
is, in the .trr file you will have a series of numbers corresponding to: cos(φ1), sin(φ1), cos(φ2),
sin(φ2), ..., cos(φn), sin(φn), and the array is padded with zeros, if necessary. Then you can use
this .trr file as input for the gmx covar program and perform principal component analysis
as usual. For this to work you will need to generate a reference file (.tpr, .gro, .pdb etc.)
containing the same number of “atoms” as the new .trr file, that is for n dihedrals you need
2n/3 atoms (rounded up if not an integer number). You should use the -nofit option for gmx
covar since the coordinates in the dummy reference file do not correspond in any way to the
information in the .trr file. Analysis of the results is done using gmx anaeig.

8.12 Hydrogen bonds

gmx hbond
The program gmx hbond analyzes the hydrogen bonds (H-bonds) between all possible donors
D and acceptors A. To determine if an H-bond exists, a geometrical criterion is used, see also
Fig. 8.8:

r ≤ rHB = 0.35 nm
α ≤ αHB = 30o

(8.33)

The value of rHB = 0.35 nm corresponds to the first minimum of the RDF of SPC water (see also
Fig. 8.3).

The program gmx hbond analyzes all hydrogen bonds existing between two groups of atoms
(which must be either identical or non-overlapping) or in specified donor-hydrogen-acceptor triplets,
in the following ways:
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Figure 8.9: Insertion of water into an H-bond. (1) Normal H-bond between two residues. (2)
H-bonding bridge via a water molecule.

• Donor-Acceptor distance (r) distribution of all H-bonds

• Hydrogen-Donor-Acceptor angle (α) distribution of all H-bonds

• The total number of H-bonds in each time frame

• The number of H-bonds in time between residues, divided into groups n-n+i where n and
n+i stand for residue numbers and i goes from 0 to 6. The group for i = 6 also includes
all H-bonds for i > 6. These groups include the n-n+3, n-n+4 and n-n+5 H-bonds, which
provide a measure for the formation of α-helices or β-turns or strands.

• The lifetime of the H-bonds is calculated from the average over all autocorrelation functions
of the existence functions (either 0 or 1) of all H-bonds:

C(τ) = 〈si(t) si(t+ τ)〉 (8.34)

with si(t) = {0, 1} for H-bond i at time t. The integral of C(τ) gives a rough estimate of
the average H-bond lifetime τHB:

τHB =

∫ ∞
0

C(τ)dτ (8.35)

Both the integral and the complete autocorrelation functionC(τ) will be output, so that more
sophisticated analysis (e.g. using multi-exponential fits) can be used to get better estimates
for τHB . A more complete analysis is given in ref. [162]; one of the more fancy option is
the Luzar and Chandler analysis of hydrogen bond kinetics [163, 164].
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• An H-bond existence map can be generated of dimensions # H-bonds×# frames. The order-
ing is identical to the index file (see below), but reversed, meaning that the last triplet in the
index file corresponds to the first row of the existence map.

• Index groups are output containing the analyzed groups, all donor-hydrogen atom pairs
and acceptor atoms in these groups, donor-hydrogen-acceptor triplets involved in hydrogen
bonds between the analyzed groups and all solvent atoms involved in insertion.

8.13 Protein-related items

gmx do_dssp, gmx rama, gmx wheel
To analyze structural changes of a protein, you can calculate the radius of gyration or the minimum
residue distances over time (see sec. 8.8), or calculate the RMSD (sec. 8.9).

You can also look at the changing of secondary structure elements during your run. For this,
you can use the program gmx do_dssp, which is an interface for the commercial program
DSSP [165]. For further information, see the DSSP manual. A typical output plot of gmx do_-
dssp is given in Fig. 8.10.

One other important analysis of proteins is the so-called Ramachandran plot. This is the projection
of the structure on the two dihedral angles φ and ψ of the protein backbone, see Fig. 8.11.

To evaluate this Ramachandran plot you can use the program gmx rama. A typical output is
given in Fig. 8.12.

When studying α-helices it is useful to have a helical wheel projection of your peptide, to see
whether a peptide is amphipathic. This can be done using the gmx wheel program. Two exam-
ples are plotted in Fig. 8.13.

8.14 Interface-related items

gmx order, gmx density, gmx potential, gmx traj
When simulating molecules with long carbon tails, it can be interesting to calculate their average
orientation. There are several flavors of order parameters, most of which are related. The program
gmx order can calculate order parameters using the equation:

Sz =
3

2
〈cos2 θz〉 −

1

2
(8.36)

where θz is the angle between the z-axis of the simulation box and the molecular axis under
consideration. The latter is defined as the vector from Cn−1 to Cn+1. The parameters Sx and Sy are
defined in the same way. The brackets imply averaging over time and molecules. Order parameters
can vary between 1 (full order along the interface normal) and −1/2 (full order perpendicular to
the normal), with a value of zero in the case of isotropic orientation.

The program can do two things for you. It can calculate the order parameter for each CH2 segment
separately, for any of three axes, or it can divide the box in slices and calculate the average value
of the order parameter per segment in one slice. The first method gives an idea of the ordering of
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Figure 8.10: Analysis of the secondary structure elements of a peptide in time.
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a molecule from head to tail, the second method gives an idea of the ordering as function of the
box length.

The electrostatic potential (ψ) across the interface can be computed from a trajectory by evaluating
the double integral of the charge density (ρ(z)):

ψ(z)− ψ(−∞) = −
∫ z

−∞
dz′

∫ z′

−∞
ρ(z′′)dz′′/ε0 (8.37)

where the position z = −∞ is far enough in the bulk phase such that the field is zero. With this
method, it is possible to “split” the total potential into separate contributions from lipid and water
molecules. The program gmx potential divides the box in slices and sums all charges of the
atoms in each slice. It then integrates this charge density to give the electric field, which is in turn
integrated to give the potential. Charge density, electric field, and potential are written to xvgr
input files.

The program gmx traj is a very simple analysis program. All it does is print the coordinates,
velocities, or forces of selected atoms. It can also calculate the center of mass of one or more
molecules and print the coordinates of the center of mass to three files. By itself, this is probably
not a very useful analysis, but having the coordinates of selected molecules or atoms can be very
handy for further analysis, not only in interfacial systems.

The program gmx density calculates the mass density of groups and gives a plot of the density
against a box axis. This is useful for looking at the distribution of groups or atoms across the
interface.
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Appendix A

Technical Details

A.1 Mixed or Double precision

GROMACS can be compiled in either mixed or double precision. Documentation of previous
GROMACS versions referred to “single precision”, but the implementation has made selective
use of double precision for many years. Using single precision for all variables would lead to a
significant reduction in accuracy. Although in “mixed precision” all state vectors, i.e. particle
coordinates, velocities and forces, are stored in single precision, critical variables are double pre-
cision. A typical example of the latter is the virial, which is a sum over all forces in the system,
which have varying signs. In addition, in many parts of the code we managed to avoid double pre-
cision for arithmetic, by paying attention to summation order or reorganization of mathematical
expressions. The default configuration uses mixed precision, but it is easy to turn on double preci-
sion by adding the option -DGMX_DOUBLE=on to cmake. Double precision will be 20 to 100%
slower than mixed precision depending on the architecture you are running on. Double precision
will use somewhat more memory and run input, energy and full-precision trajectory files will be
almost twice as large.

The energies in mixed precision are accurate up to the last decimal, the last one or two decimals
of the forces are non-significant. The virial is less accurate than the forces, since the virial is only
one order of magnitude larger than the size of each element in the sum over all atoms (sec. B.1).
In most cases this is not really a problem, since the fluctuations in the virial can be two orders
of magnitude larger than the average. Using cut-offs for the Coulomb interactions cause large
errors in the energies, forces, and virial. Even when using a reaction-field or lattice sum method,
the errors are larger than, or comparable to, the errors due to the partial use of single precision.
Since MD is chaotic, trajectories with very similar starting conditions will diverge rapidly, the
divergence is faster in mixed precision than in double precision.

For most simulations, mixed precision is accurate enough. In some cases double precision is
required to get reasonable results:

• normal mode analysis, for the conjugate gradient or l-bfgs minimization and the calculation
and diagonalization of the Hessian
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• long-term energy conservation, especially for large systems

A.2 Environment Variables

GROMACS programs may be influenced by the use of environment variables. First of all, the
variables set in the GMXRC file are essential for running and compiling GROMACS. Some other
useful environment variables are listed in the following sections. Most environment variables
function by being set in your shell to any non-NULL value. Specific requirements are described
below if other values need to be set. You should consult the documentation for your shell for
instructions on how to set environment variables in the current shell, or in config files for future
shells. Note that requirements for exporting environment variables to jobs run under batch control
systems vary and you should consult your local documentation for details.

Output Control

1. GMX_CONSTRAINTVIR: print constraint virial and force virial energy terms.

2. GMX_MAXBACKUP: GROMACS automatically backs up old copies of files when trying
to write a new file of the same name, and this variable controls the maximum number of
backups that will be made, default 99. If set to 0 it fails to run if any output file already
exists. And if set to -1 it overwrites any output file without making a backup.

3. GMX_NO_QUOTES: if this is explicitly set, no cool quotes will be printed at the end of a
program.

4. GMX_SUPPRESS_DUMP: prevent dumping of step files during (for example) blowing up
during failure of constraint algorithms.

5. GMX_TPI_DUMP: dump all configurations to a .pdb file that have an interaction energy
less than the value set in this environment variable.

6. GMX_VIEW_XPM: GMX_VIEW_XVG, GMX_VIEW_EPS and GMX_VIEW_PDB, commands
used to automatically view .xvg, .xpm, .eps and .pdb file types, respectively; they
default to xv, xmgrace, ghostview and rasmol. Set to empty to disable automatic
viewing of a particular file type. The command will be forked off and run in the background
at the same priority as the GROMACS tool (which might not be what you want). Be careful
not to use a command which blocks the terminal (e.g. vi), since multiple instances might
be run.

7. GMX_VIRIAL_TEMPERATURE: print virial temperature energy term

8. GMX_LOG_BUFFER: the size of the buffer for file I/O. When set to 0, all file I/O will be
unbuffered and therefore very slow. This can be handy for debugging purposes, because it
ensures that all files are always totally up-to-date.

9. GMX_LOGO_COLOR: set display color for logo in ngmx.

10. GMX_PRINT_LONGFORMAT: use long float format when printing decimal values.
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11. GMX_COMPELDUMP: Applies for computational electrophysiology setups only (see section
6.6). The initial structure gets dumped to .pdb file, which allows to check whether multi-
meric channels have the correct PBC representation.

Debugging

1. GMX_PRINT_DEBUG_LINES: when set, print debugging info on line numbers.

2. GMX_DD_NST_DUMP: number of steps that elapse between dumping the current DD to
a PDB file (default 0). This only takes effect during domain decomposition, so it should
typically be 0 (never), 1 (every DD phase) or a multiple of nstlist.

3. GMX_DD_NST_DUMP_GRID: number of steps that elapse between dumping the current
DD grid to a PDB file (default 0). This only takes effect during domain decomposition, so
it should typically be 0 (never), 1 (every DD phase) or a multiple of nstlist.

4. GMX_DD_DEBUG: general debugging trigger for every domain decomposition (default 0,
meaning off). Currently only checks global-local atom index mapping for consistency.

5. GMX_DD_NPULSE: over-ride the number of DD pulses used (default 0, meaning no over-
ride). Normally 1 or 2.

Performance and Run Control

1. GMX_DO_GALACTIC_DYNAMICS: planetary simulations are made possible (just for fun)
by setting this environment variable, which allows setting epsilon_r = -1 in the .mdp
file. Normally, epsilon_rmust be greater than zero to prevent a fatal error. See www.gromacs.org
for example input files for a planetary simulation.

2. GMX_ALLOW_CPT_MISMATCH: when set, runs will not exit if the ensemble set in the
.tpr file does not match that of the .cpt file.

3. GMX_CUDA_NB_EWALD_TWINCUT: force the use of twin-range cutoff kernel even if rvdw
= rcoulomb after PP-PME load balancing. The switch to twin-range kernels is automated,
so this variable should be used only for benchmarking.

4. GMX_CUDA_NB_ANA_EWALD: force the use of analytical Ewald kernels. Should be used
only for benchmarking.

5. GMX_CUDA_NB_TAB_EWALD: force the use of tabulated Ewald kernels. Should be used
only for benchmarking.

6. GMX_CUDA_STREAMSYNC: force the use of cudaStreamSynchronize on ECC-enabled GPUs,
which leads to performance loss due to a known CUDA driver bug present in API v5.0
NVIDIA drivers (pre-30x.xx). Cannot be set simultaneously with GMX_NO_CUDA_STREAMSYNC.

7. GMX_CYCLE_ALL: times all code during runs. Incompatible with threads.

8. GMX_CYCLE_BARRIER: calls MPI Barrier before each cycle start/stop call.

http://www.gromacs.org
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9. GMX_DD_ORDER_ZYX: build domain decomposition cells in the order (z, y, x) rather than
the default (x, y, z).

10. GMX_DD_USE_SENDRECV2: during constraint and vsite communication, use a pair of
MPI_SendRecv calls instead of two simultaneous non-blocking calls (default 0, meaning
off). Might be faster on some MPI implementations.

11. GMX_DLB_BASED_ON_FLOPS: do domain-decomposition dynamic load balancing based
on flop count rather than measured time elapsed (default 0, meaning off). This makes the
load balancing reproducible, which can be useful for debugging purposes. A value of 1 uses
the flops; a value ¿ 1 adds (value - 1)*5% of noise to the flops to increase the imbalance and
the scaling.

12. GMX_DLB_MAX_BOX_SCALING: maximum percentage box scaling permitted per domain-
decomposition load-balancing step (default 10)

13. GMX_DD_RECORD_LOAD: record DD load statistics for reporting at end of the run (default
1, meaning on)

14. GMX_DD_NST_SORT_CHARGE_GROUPS: number of steps that elapse between re-sorting
of the charge groups (default 1). This only takes effect during domain decomposition, so
should typically be 0 (never), 1 (to mean at every domain decomposition), or a multiple of
nstlist.

15. GMX_DETAILED_PERF_STATS: when set, print slightly more detailed performance in-
formation to the .log file. The resulting output is the way performance summary is re-
ported in versions 4.5.x and thus may be useful for anyone using scripts to parse .log files
or standard output.

16. GMX_DISABLE_SIMD_KERNELS: disables architecture-specific SIMD-optimized (SSE2,
SSE4.1, AVX, etc.) non-bonded kernels thus forcing the use of plain C kernels.

17. GMX_DISABLE_CUDA_TIMING: timing of asynchronously executed GPU operations can
have a non-negligible overhead with short step times. Disabling timing can improve perfor-
mance in these cases.

18. GMX_DISABLE_GPU_DETECTION: when set, disables GPU detection even if mdrunwas
compiled with GPU support.

19. GMX_DISABLE_PINHT: disable pinning of consecutive threads to physical cores when
using Intel hyperthreading. Controlled with mdrun -nopinht and thus this environment
variable will likely be removed.

20. GMX_DISRE_ENSEMBLE_SIZE: the number of systems for distance restraint ensemble
averaging. Takes an integer value.

21. GMX_EMULATE_GPU: emulate GPU runs by using algorithmically equivalent CPU refer-
ence code instead of GPU-accelerated functions. As the CPU code is slow, it is intended to
be used only for debugging purposes. The behavior is automatically triggered if non-bonded
calculations are turned off using GMX_NO_NONBONDED case in which the non-bonded cal-
culations will not be called, but the CPU-GPU transfer will also be skipped.
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22. GMX_ENX_NO_FATAL: disable exiting upon encountering a corrupted frame in an .edr
file, allowing the use of all frames up until the corruption.

23. GMX_FORCE_UPDATE: update forces when invoking mdrun -rerun.

24. GMX_GPU_ID: set in the same way as the mdrun option -gpu_id, GMX_GPU_ID allows
the user to specify different GPU id-s, which can be useful for selecting different devices on
different compute nodes in a cluster. Cannot be used in conjunction with -gpu_id.

25. GMX_IGNORE_FSYNC_FAILURE_ENV: allow mdrun to continue even if a file is miss-
ing.

26. GMX_LJCOMB_TOL: when set to a floating-point value, overrides the default tolerance of
1e-5 for force-field floating-point parameters.

27. GMX_MAX_MPI_THREADS: sets the maximum number of MPI-threads that mdrun can
use.

28. GMX_MAXCONSTRWARN: if set to -1, mdrun will not exit if it produces too many LINCS
warnings.

29. GMX_NB_GENERIC: use the generic C kernel. Should be set if using the group-based cutoff
scheme and also sets GMX_NO_SOLV_OPT to be true, thus disabling solvent optimizations
as well.

30. GMX_NB_MIN_CI: neighbor list balancing parameter used when running on GPU. Sets
the target minimum number pair-lists in order to improve multi-processor load-balance for
better performance with small simulation systems. Must be set to a positive integer, the
default value is optimized for NVIDIA Fermi and Kepler GPUs, therefore changing it is not
necessary for normal usage, but it can be useful on future architectures.

31. GMX_NBLISTCG: use neighbor list and kernels based on charge groups.

32. GMX_NBNXN_CYCLE: when set, print detailed neighbor search cycle counting.

33. GMX_NBNXN_EWALD_ANALYTICAL: force the use of analytical Ewald non-bonded ker-
nels, mutually exclusive of GMX_NBNXN_EWALD_TABLE.

34. GMX_NBNXN_EWALD_TABLE: force the use of tabulated Ewald non-bonded kernels, mu-
tually exclusive of GMX_NBNXN_EWALD_ANALYTICAL.

35. GMX_NBNXN_SIMD_2XNN: force the use of 2x(N+N) SIMD CPU non-bonded kernels,
mutually exclusive of GMX_NBNXN_SIMD_4XN.

36. GMX_NBNXN_SIMD_4XN: force the use of 4xN SIMD CPU non-bonded kernels, mutually
exclusive of GMX_NBNXN_SIMD_2XNN.

37. GMX_NO_ALLVSALL: disables optimized all-vs-all kernels.

38. GMX_NO_CART_REORDER: used in initializing domain decomposition communicators.
Rank reordering is default, but can be switched off with this environment variable.
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39. GMX_NO_CUDA_STREAMSYNC: the opposite of GMX_CUDA_STREAMSYNC. Disables the
use of the standard cudaStreamSynchronize-based GPU waiting to improve performance
when using CUDA driver API ealier than v5.0 with ECC-enabled GPUs.

40. GMX_NO_INT, GMX_NO_TERM, GMX_NO_USR1: disable signal handlers for SIGINT,
SIGTERM, and SIGUSR1, respectively.

41. GMX_NO_NODECOMM: do not use separate inter- and intra-node communicators.

42. GMX_NO_NONBONDED: skip non-bonded calculations; can be used to estimate the possible
performance gain from adding a GPU accelerator to the current hardware setup – assuming
that this is fast enough to complete the non-bonded calculations while the CPU does bonded
force and PME computation.

43. GMX_NO_PULLVIR: when set, do not add virial contribution to COM pull forces.

44. GMX_NOCHARGEGROUPS: disables multi-atom charge groups, i.e. each atom in all non-
solvent molecules is assigned its own charge group.

45. GMX_NOPREDICT: shell positions are not predicted.

46. GMX_NO_SOLV_OPT: turns off solvent optimizations; automatic if GMX_NB_GENERIC is
enabled.

47. GMX_NSCELL_NCG: the ideal number of charge groups per neighbor searching grid cell
is hard-coded to a value of 10. Setting this environment variable to any other integer value
overrides this hard-coded value.

48. GMX_PME_NTHREADS: set the number of OpenMP or PME threads (overrides the number
guessed by mdrun.

49. GMX_PME_P3M: use P3M-optimized influence function instead of smooth PME B-spline
interpolation.

50. GMX_PME_THREAD_DIVISION: PME thread division in the format “x y z” for all three
dimensions. The sum of the threads in each dimension must equal the total number of PME
threads (set in GMX_PME_NTHREADS).

51. GMX_PMEONEDD: if the number of domain decomposition cells is set to 1 for both x and y,
decompose PME in one dimension.

52. GMX_REQUIRE_SHELL_INIT: require that shell positions are initiated.

53. GMX_REQUIRE_TABLES: require the use of tabulated Coulombic and van der Waals in-
teractions.

54. GMX_SCSIGMA_MIN: the minimum value for soft-core σ. Note that this value is set using
the sc-sigma keyword in the .mdp file, but this environment variable can be used to
reproduce pre-4.5 behavior with respect to this parameter.

55. GMX_TPIC_MASSES: should contain multiple masses used for test particle insertion into a
cavity. The center of mass of the last atoms is used for insertion into the cavity.
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56. GMX_USE_GRAPH: use graph for bonded interactions.

57. GMX_VERLET_BUFFER_RES: resolution of buffer size in Verlet cutoff scheme. The de-
fault value is 0.001, but can be overridden with this environment variable.

58. GMX_VERLET_SCHEME: convert from group-based to Verlet cutoff scheme, even if the
cutoff_scheme is not set to use Verlet in the .mdp file. It is unnecessary since the
-testverlet option of mdrun has the same functionality, but it is maintained for back-
wards compatibility.

59. MPIRUN: the mpirun command used by g_tune_pme.

60. MDRUN: the mdrun command used by g_tune_pme.

61. GMX_NSTLIST: sets the default value for nstlist, preventing it from being tuned during
mdrun startup when using the Verlet cutoff scheme.

62. GMX_USE_TREEREDUCE: use tree reduction for nbnxn force reduction. Potentially faster
for large number of OpenMP threads (if memory locality is important).

Analysis and Core Functions

1. GMX_QM_ACCURACY: accuracy in Gaussian L510 (MC-SCF) component program.

2. GMX_QM_ORCA_BASENAME: prefix of .tpr files, used in Orca calculations for input and
output file names.

3. GMX_QM_CPMCSCF: when set to a nonzero value, Gaussian QM calculations will itera-
tively solve the CP-MCSCF equations.

4. GMX_QM_MODIFIED_LINKS_DIR: location of modified links in Gaussian.

5. DSSP: used by do_dssp to point to the dssp executable (not just its path).

6. GMX_QM_GAUSS_DIR: directory where Gaussian is installed.

7. GMX_QM_GAUSS_EXE: name of the Gaussian executable.

8. GMX_DIPOLE_SPACING: spacing used by g_dipoles.

9. GMX_MAXRESRENUM: sets the maximum number of residues to be renumbered by grompp.
A value of -1 indicates all residues should be renumbered.

10. GMX_FFRTP_TER_RENAME: Some force fields (like AMBER) use specific names for N-
and C- terminal residues (NXXX and CXXX) as .rtp entries that are normally renamed.
Setting this environment variable disables this renaming.

11. GMX_PATH_GZIP: gunzip executable, used by g_wham.

12. GMX_FONT: name of X11 font used by ngmx.
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13. GMXTIMEUNIT: the time unit used in output files, can be anything in fs, ps, ns, us, ms, s,
m or h.

14. GMX_QM_GAUSSIAN_MEMORY: memory used for Gaussian QM calculation.

15. MULTIPROT: name of the multiprot executable, used by the contributed program do_-
multiprot.

16. NCPUS: number of CPUs to be used for Gaussian QM calculation

17. GMX_ORCA_PATH: directory where Orca is installed.

18. GMX_QM_SA_STEP: simulated annealing step size for Gaussian QM calculation.

19. GMX_QM_GROUND_STATE: defines state for Gaussian surface hopping calculation.

20. GMX_TOTAL: name of the total executable used by the contributed do_shift program.

21. GMX_ENER_VERBOSE: make g_energy and eneconv loud and noisy.

22. VMD_PLUGIN_PATH: where to find VMD plug-ins. Needed to be able to read file formats
recognized only by a VMD plug-in.

23. VMDDIR: base path of VMD installation.

24. GMX_USE_XMGR: sets viewer to xmgr (deprecated) instead of xmgrace.

A.3 Running GROMACS in parallel

By default GROMACS will be compiled with the built-in thread-MPI library. This library handles
communication between threads on a single node more efficiently than using an external MPI li-
brary. To run GROMACS in parallel over multiple nodes, e.g. on a cluster, you need to configure
and compile GROMACS with an external MPI library. All supercomputers are shipped with MPI
libraries optimized for that particular platform, and there are several good free MPI implementa-
tions; OpenMPI is usually a good choice. Note that MPI and thread-MPI support are mutually
incompatible.

In addition to MPI parallelization, GROMACS supports also thread-parallelization through OpenMP.
MPI and OpenMP parallelization can be combined, which results in, so called, hybrid paralleliza-
tion. It can offer better performance and scaling in some cases.

See www.gromacs.org for details on the use and performance of the different parallelization
schemes.

A.4 Running GROMACS on GPUs

As of version 4.6, GROMACS has native GPU support through CUDA. Note that GROMACS only
off-loads the most compute intensive parts to the GPU, currently the non-bonded interactions, and
does all other parts of the MD calculation on the CPU. The requirements for the CUDA code are

http://www.gromacs.org
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an Nvidia GPU with compute capability ≥ 2.0, i.e. at least Fermi class. In many cases cmake
can auto-detect GPUs and the support will be configured automatically. To be sure GPU support is
configured, pass the -DGMX_GPU=on option to cmake. The actual use of GPUs is decided at run
time by mdrun, depending on the availability of (suitable) GPUs and on the run input settings. A
binary compiled with GPU support can also run CPU only simulations. Use mdrun -nb cpu to
force a simulation to run on CPUs only. Only simulations with the Verlet cut-off scheme will run
on a GPU. To test performance of old tpr files with GPUs, you can use the -testverlet option
of mdrun, but as this doesn’t do the full parameter consistency check of grommp, you should not
use this option for production simulations. Getting good performance with GROMACS on GPUs
is easy, but getting best performance can be difficult. Please check www.gromacs.org for up to
date information on GPU usage.

http://www.gromacs.org


264 Appendix A. Technical Details



Appendix B

Some implementation details

In this chapter we will present some implementation details. This is far from complete, but we
deemed it necessary to clarify some things that would otherwise be hard to understand.

B.1 Single Sum Virial in GROMACS

The virial Ξ can be written in full tensor form as:

Ξ = −1

2

N∑
i<j

rij ⊗ F ij (B.1)

where ⊗ denotes the direct product of two vectors.1 When this is computed in the inner loop of
an MD program 9 multiplications and 9 additions are needed.2

Here it is shown how it is possible to extract the virial calculation from the inner loop [166].

B.1.1 Virial

In a system with , the periodicity must be taken into account for the virial:

Ξ = −1

2

N∑
i<j

rnij ⊗ F ij (B.2)

where rnij denotes the distance vector of the nearest image of atom i from atom j. In this definition
we add a shift vector δi to the position vector ri of atom i. The difference vector rnij is thus equal
to:

rnij = ri + δi − rj (B.3)

or in shorthand:
rnij = rni − rj (B.4)

1(u⊗ v)αβ = uαvβ
2The calculation of Lennard-Jones and Coulomb forces is about 50 floating point operations.
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In a triclinic system, there are 27 possible images of i; when a truncated octahedron is used, there
are 15 possible images.

B.1.2 Virial from non-bonded forces

Here the derivation for the single sum virial in the non-bonded force routine is given. i 6= j in all
formulae below.

Ξ = −1

2

N∑
i<j

rnij ⊗ F ij (B.5)

= −1

4

N∑
i=1

N∑
j=1

(ri + δi − rj)⊗ F ij (B.6)

= −1

4

N∑
i=1

N∑
j=1

(ri + δi)⊗ F ij − rj ⊗ F ij (B.7)

= −1

4

 N∑
i=1

N∑
j=1

(ri + δi)⊗ F ij −
N∑
i=1

N∑
j=1

rj ⊗ F ij

 (B.8)

= −1

4

 N∑
i=1

(ri + δi)⊗
N∑
j=1

F ij −
N∑
j=1

rj ⊗
N∑
i=1

F ij

 (B.9)

= −1

4

 N∑
i=1

(ri + δi)⊗ F i +
N∑
j=1

rj ⊗ F j

 (B.10)

= −1

4

(
2

N∑
i=1

ri ⊗ F i +
N∑
i=1

δi ⊗ F i

)
(B.11)

In these formulae we introduced:

F i =
N∑
j=1

F ij (B.12)

F j =
N∑
i=1

F ji (B.13)

which is the total force on i with respect to j. Because we use Newton’s Third Law:

F ij = −F ji (B.14)

we must, in the implementation, double the term containing the shift δi.

B.1.3 The intra-molecular shift (mol-shift)

For the bonded forces and SHAKE it is possible to make a mol-shift list, in which the periodicity
is stored. We simple have an array mshift in which for each atom an index in the shiftvec
array is stored.
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The algorithm to generate such a list can be derived from graph theory, considering each particle
in a molecule as a bead in a graph, the bonds as edges.

1 Represent the bonds and atoms as bidirectional graph

2 Make all atoms white

3 Make one of the white atoms black (atom i) and put it in the central box

4 Make all of the neighbors of i that are currently white, gray

5 Pick one of the gray atoms (atom j), give it the correct periodicity with respect to any of its
black neighbors and make it black

6 Make all of the neighbors of j that are currently white, gray

7 If any gray atom remains, go to [5]

8 If any white atom remains, go to [3]

Using this algorithm we can

• optimize the bonded force calculation as well as SHAKE

• calculate the virial from the bonded forces in the single sum method again

Find a representation of the bonds as a bidirectional graph.

B.1.4 Virial from Covalent Bonds

Since the covalent bond force gives a contribution to the virial, we have:

b = ‖rnij‖ (B.15)

Vb =
1

2
kb(b− b0)2 (B.16)

F i = −∇Vb (B.17)

= kb(b− b0)
rnij
b

(B.18)

F j = −F i (B.19)

The virial contribution from the bonds then is:

Ξb = −1

2
(rni ⊗ F i + rj ⊗ F j) (B.20)

= −1

2
rnij ⊗ F i (B.21)
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B.1.5 Virial from SHAKE

An important contribution to the virial comes from shake. Satisfying the constraints a force G that
is exerted on the particles “shaken.” If this force does not come out of the algorithm (as in standard
SHAKE) it can be calculated afterward (when using leap-frog) by:

∆ri = ri(t+ ∆t)− [ri(t) + vi(t−
∆t

2
)∆t+

F i

mi
∆t2] (B.22)

Gi =
mi∆ri

∆t2
(B.23)

This does not help us in the general case. Only when no periodicity is needed (like in rigid water)
this can be used, otherwise we must add the virial calculation in the inner loop of SHAKE.

When it is applicable the virial can be calculated in the single sum way:

Ξ = −1

2

Nc∑
i

ri ⊗ F i (B.24)

where Nc is the number of constrained atoms.

B.2 Optimizations

Here we describe some of the algorithmic optimizations used in GROMACS, apart from par-
allelism. One of these, the implementation of the 1.0/sqrt(x) function is treated separately in
sec. B.3. The most important other optimizations are described below.

B.2.1 Inner Loops for Water

GROMACS uses special inner loops to calculate non-bonded interactions for water molecules with
other atoms, and yet another set of loops for interactions between pairs of water molecules. There
highly optimized loops for two types of water models. For three site models similar to SPC [81],
i.e.:

1. There are three atoms in the molecule.

2. The whole molecule is a single charge group.

3. The first atom has Lennard-Jones (sec. 4.1.1) and Coulomb (sec. 4.1.3) interactions.

4. Atoms two and three have only Coulomb interactions, and equal charges.

These loops also works for the SPC/E [167] and TIP3P [125] water models. And for four site
water models similar to TIP4P [125]:

1. There are four atoms in the molecule.

2. The whole molecule is a single charge group.
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3. The first atom has only Lennard-Jones (sec. 4.1.1) interactions.

4. Atoms two and three have only Coulomb (sec. 4.1.3) interactions, and equal charges.

5. Atom four has only Coulomb interactions.

The benefit of these implementations is that there are more floating-point operations in a single
loop, which implies that some compilers can schedule the code better. However, it turns out that
even some of the most advanced compilers have problems with scheduling, implying that manual
tweaking is necessary to get optimum performance. This may include common-sub-expression
elimination, or moving code around.

B.2.2 Fortran Code

Unfortunately, on a few platforms Fortran compilers are still better than C-compilers. For some
machines (e.g. SGI Power Challenge) the difference may be up to a factor of 3, in the case of vector
computers this may be even larger. Therefore, some of the routines that take up a lot of computer
time have been translated into Fortran and even assembly code for Intel and AMD x86 processors.
In most cases, the Fortran or assembly loops should be selected automatically by the configure
script when appropriate, but you can also tweak this by setting options to the configure script.

B.3 Computation of the 1.0/sqrt function

B.3.1 Introduction

The GROMACS project started with the development of a 1/
√
x processor that calculates:

Y (x) =
1√
x

(B.25)

As the project continued, the Intel i860 processor was used to implement GROMACS, which now
turned into almost a full software project. The 1/

√
x processor was implemented using a Newton-

Raphson iteration scheme for one step. For this it needed look-up tables to provide the initial
approximation. The 1/

√
x function makes it possible to use two almost independent tables for the

exponent seed and the fraction seed with the IEEE floating-point representation.

B.3.2 General

According to [168] the 1/
√
x function can be evaluated using the Newton-Raphson iteration

scheme. The inverse function is:
X(y) =

1

y2
(B.26)

So instead of calculating:
Y (a) = q (B.27)

the equation:
X(q)− a = 0 (B.28)
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︸ ︷︷ ︸︸ ︷︷ ︸?
FES

02331

V alue = (−1)S(2E−127)(1.F )

02331

V alue = (−1)S(2E−127)(1.F )

Figure B.1: IEEE single-precision floating-point format

can now be solved using Newton-Raphson. An iteration is performed by calculating:

yn+1 = yn −
f(yn)

f ′(yn)
(B.29)

The absolute error ε, in this approximation is defined by:

ε ≡ yn − q (B.30)

Using Taylor series expansion to estimate the error results in:

εn+1 = −ε
2
n

2

f ′′(yn)

f ′(yn)
(B.31)

according to [168] equation (3.2). This is an estimation of the absolute error.

B.3.3 Applied to floating-point numbers

Floating-point numbers in IEEE 32 bit single-precision format have a nearly constant relative error
of ∆x/x = 2−24. As seen earlier in the Taylor series expansion equation (eqn. B.31), the error in
every iteration step is absolute and in general dependent of y. If the error is expressed as a relative
error εr the following holds:

εrn+1 ≡
εn+1

y
(B.32)

and so:

εrn+1 = −(
εn
y

)2y
f ′′

2f ′
(B.33)

For the function f(y) = y−2 the term yf ′′/2f ′ is constant (equal to −3/2) so the relative error
εrn is independent of y.

εrn+1 =
3

2
(εrn)2 (B.34)

The conclusion of this is that the function 1/
√
x can be calculated with a specified accuracy.
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B.3.4 Specification of the look-up table

To calculate the function 1/
√
x using the previously mentioned iteration scheme, it is clear that the

first estimation of the solution must be accurate enough to get precise results. The requirements
for the calculation are

• Maximum possible accuracy with the used IEEE format

• Use only one iteration step for maximum speed

The first requirement states that the result of 1/
√
x may have a relative error εr equal to the

εr of a IEEE 32 bit single-precision floating-point number. From this, the 1/
√
x of the initial

approximation can be derived, rewriting the definition of the relative error for succeeding steps
(eqn. B.34):

εn
y

=

√
εrn+1

2f ′

yf ′′
(B.35)

So for the look-up table the needed accuracy is:

∆Y

Y
=

√
2

3
2−24 (B.36)

which defines the width of the table that must be ≥ 13 bit.

At this point the relative error, εrn , of the look-up table is known. From this the maximum relative
error in the argument can be calculated as follows. The absolute error ∆x is defined as:

∆x ≡ ∆Y

Y ′
(B.37)

and thus:
∆x

Y
=

∆Y

Y
(Y ′)−1 (B.38)

and thus:

∆x = constant
Y

Y ′
(B.39)

For the 1/
√
x function, Y/Y ′ ∼ x holds, so ∆x/x = constant. This is a property of the used

floating-point representation as earlier mentioned. The needed accuracy of the argument of the
look-up table follows from:

∆x

x
= −2

∆Y

Y
(B.40)

So, using the floating-point accuracy (eqn. B.36):

∆x

x
= −2

√
2

3
2−24 (B.41)

This defines the length of the look-up table which should be ≥ 12 bit.
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B.3.5 Separate exponent and fraction computation

The used IEEE 32 bit single-precision floating-point format specifies that a number is represented
by a exponent and a fraction. The previous section specifies for every possible floating-point
number the look-up table length and width. Only the size of the fraction of a floating-point number
defines the accuracy. The conclusion from this can be that the size of the look-up table is length of
look-up table, earlier specified, times the size of the exponent (21228, 1Mb). The 1/

√
x function

has the property that the exponent is independent of the fraction. This becomes clear if the floating-
point representation is used. Define:

x ≡ (−1)S(2E−127)(1.F ) (B.42)

See Fig. B.1, where 0 ≤ S ≤ 1, 0 ≤ E ≤ 255, 1 ≤ 1.F < 2 and S, E, F integer (normalization
conditions). The sign bit (S) can be omitted because 1/

√
x is only defined for x > 0. The 1/

√
x

function applied to x results in:

y(x) =
1√
x

(B.43)

or:
y(x) =

1√
(2E−127)(1.F )

(B.44)

This can be rewritten as:
y(x) = (2E−127)−1/2(1.F )−1/2 (B.45)

Define:
(2E

′−127) ≡ (2E−127)−1/2 (B.46)

1.F ′ ≡ (1.F )−1/2 (B.47)

Then 1√
2
< 1.F ′ ≤ 1 holds, so the condition 1 ≤ 1.F ′ < 2, which is essential for normalized real

representation, is not valid anymore. By introducing an extra term, this can be corrected. Rewrite
the 1/

√
x function applied to floating-point numbers (eqn. B.45) as:

y(x) = (2
127−E

2
−1)(2(1.F )−1/2) (B.48)

and:
(2E

′−127) ≡ (2
127−E

2
−1) (B.49)

1.F ′ ≡ 2(1.F )−1/2 (B.50)

Then
√

2 < 1.F ≤ 2 holds. This is not the exact valid range as defined for normalized floating-
point numbers in eqn. B.42. The value 2 causes the problem. By mapping this value on the nearest
representation < 2, this can be solved. The small error that is introduced by this approximation is
within the allowable range.

The integer representation of the exponent is the next problem. Calculating (2
127−E

2
−1) introduces

a fractional result if (127 − E) = odd. This is again easily accounted for by splitting up the
calculation into an odd and an even part. For (127 − E) = even E′ in equation (eqn. B.49) can
be exactly calculated in integer arithmetic as a function of E.

E′ =
127− E

2
+ 126 (B.51)
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For (127− E) = odd equation (eqn. B.45) can be rewritten as:

y(x) = (2
127−E−1

2 )(
1.F

2
)−1/2 (B.52)

Thus:
E′ =

126− E
2

+ 127 (B.53)

which also can be calculated exactly in integer arithmetic. Note that the fraction is automatically
corrected for its range earlier mentioned, so the exponent does not need an extra correction.

The conclusions from this are:

• The fraction and exponent look-up table are independent. The fraction look-up table exists
of two tables (odd and even exponent) so the odd/even information of the exponent (lsb bit)
has to be used to select the right table.

• The exponent table is an 256 x 8 bit table, initialized for odd and even.

B.3.6 Implementation

The look-up tables can be generated by a small C program, which uses floating-point numbers
and operations with IEEE 32 bit single-precision format. Note that because of the odd/even
information that is needed, the fraction table is twice the size earlier specified (13 bit i.s.o. 12 bit).

The function according to eqn. B.29 has to be implemented. Applied to the 1/
√
x function, equa-

tion eqn. B.28 leads to:

f = a− 1

y2
(B.54)

and so:
f ′ =

2

y3
(B.55)

so:

yn+1 = yn −
a− 1

y2n
2
y3n

(B.56)

or:
yn+1 =

yn
2

(3− ay2
n) (B.57)

Where y0 can be found in the look-up tables, and y1 gives the result to the maximum accuracy. It
is clear that only one iteration extra (in double precision) is needed for a double-precision result.
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Appendix C

Averages and fluctuations

C.1 Formulae for averaging

Note: this section was taken from ref [169].

When analyzing a MD trajectory averages 〈x〉 and fluctuations

〈
(∆x)2

〉 1
2 =

〈
[x− 〈x〉]2

〉 1
2 (C.1)

of a quantity x are to be computed. The variance σx of a series of Nx values, {xi}, can be computed
from

σx =
Nx∑
i=1

x2
i −

1

Nx

(
Nx∑
i=1

xi

)2

(C.2)

Unfortunately this formula is numerically not very accurate, especially when σ
1
2
x is small compared

to the values of xi. The following (equivalent) expression is numerically more accurate

σx =
Nx∑
i=1

[xi − 〈x〉]2 (C.3)

with

〈x〉 =
1

Nx

Nx∑
i=1

xi (C.4)

Using eqns. C.2 and C.4 one has to go through the series of xi values twice, once to determine
〈x〉 and again to compute σx, whereas eqn. C.1 requires only one sequential scan of the series
{xi}. However, one may cast eqn. C.2 in another form, containing partial sums, which allows for
a sequential update algorithm. Define the partial sum

Xn,m =
m∑
i=n

xi (C.5)



276 Appendix C. Averages and fluctuations

and the partial variance

σn,m =
m∑
i=n

[
xi −

Xn,m

m− n+ 1

]2

(C.6)

It can be shown that
Xn,m+k = Xn,m +Xm+1,m+k (C.7)

and

σn,m+k = σn,m + σm+1,m+k +

[
Xn,m

m− n+ 1
− Xn,m+k

m+ k − n+ 1

]2

∗

(m− n+ 1)(m+ k − n+ 1)

k
(C.8)

For n = 1 one finds

σ1,m+k = σ1,m + σm+1,m+k +

[
X1,m

m
− X1,m+k

m+ k

]2 m(m+ k)

k
(C.9)

and for n = 1 and k = 1 (eqn. C.8) becomes

σ1,m+1 = σ1,m +

[
X1,m

m
− X1,m+1

m+ 1

]2

m(m+ 1) (C.10)

= σ1,m +
[ X1,m −mxm+1 ]2

m(m+ 1)
(C.11)

where we have used the relation

X1,m+1 = X1,m + xm+1 (C.12)

Using formulae (eqn. C.11) and (eqn. C.12) the average

〈x〉 =
X1,Nx

Nx
(C.13)

and the fluctuation 〈
(∆x)2

〉 1
2 =

[
σ1,Nx

Nx

] 1
2

(C.14)

can be obtained by one sweep through the data.

C.2 Implementation

In GROMACS the instantaneous energiesE(m) are stored in the energy file, along with the values
of σ1,m andX1,m. Although the steps are counted from 0, for the energy and fluctuations steps are
counted from 1. This means that the equations presented here are the ones that are implemented.
We give somewhat lengthy derivations in this section to simplify checking of code and equations
later on.
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C.2.1 Part of a Simulation

It is not uncommon to perform a simulation where the first part, e.g. 100 ps, is taken as equili-
bration. However, the averages and fluctuations as printed in the log file are computed over the
whole simulation. The equilibration time, which is now part of the simulation, may in such a case
invalidate the averages and fluctuations, because these numbers are now dominated by the initial
drift towards equilibrium.

Using eqns. C.7 and C.8 the average and standard deviation over part of the trajectory can be
computed as:

Xm+1,m+k = X1,m+k −X1,m (C.15)

σm+1,m+k = σ1,m+k − σ1,m −
[
X1,m

m
− X1,m+k

m+ k

]2 m(m+ k)

k
(C.16)

or, more generally (with p ≥ 1 and q ≥ p):

Xp,q = X1,q −X1,p−1 (C.17)

σp,q = σ1,q − σ1,p−1 −
[
X1,p−1

p− 1
− X1,q

q

]2 (p− 1)q

q − p+ 1
(C.18)

Note that implementation of this is not entirely trivial, since energies are not stored every time
step of the simulation. We therefore have to construct X1,p−1 and σ1,p−1 from the information at
time p using eqns. C.11 and C.12:

X1,p−1 = X1,p − xp (C.19)

σ1,p−1 = σ1,p −
[ X1,p−1 − (p− 1)xp ]2

(p− 1)p
(C.20)

C.2.2 Combining two simulations

Another frequently occurring problem is, that the fluctuations of two simulations must be com-
bined. Consider the following example: we have two simulations (A) of n and (B) of m steps, in
which the second simulation is a continuation of the first. However, the second simulation starts
numbering from 1 instead of from n + 1. For the partial sum this is no problem, we have to add
XA

1,n from run A:

XAB
1,n+m = XA

1,n +XB
1,m (C.21)

When we want to compute the partial variance from the two components we have to make a
correction ∆σ:

σAB1,n+m = σA1,n + σB1,m + ∆σ (C.22)

if we define xABi as the combined and renumbered set of data points we can write:

σAB1,n+m =
n+m∑
i=1

[
xABi −

XAB
1,n+m

n+m

]2

(C.23)
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and thus

n+m∑
i=1

[
xABi −

XAB
1,n+m

n+m

]2

=
n∑
i=1

[
xAi −

XA
1,n

n

]2

+
m∑
i=1

[
xBi −

XB
1,m

m

]2

+ ∆σ (C.24)

or

n+m∑
i=1

(xABi )2 − 2xABi
XAB

1,n+m

n+m
+

(
XAB

1,n+m

n+m

)2
 −

n∑
i=1

(xAi )2 − 2xAi
XA

1,n

n
+

(
XA

1,n

n

)2
 −

m∑
i=1

(xBi )2 − 2xBi
XB

1,m

m
+

(
XB

1,m

m

)2
 = ∆σ (C.25)

all the x2
i terms drop out, and the terms independent of the summation counter i can be simplified:(

XAB
1,n+m

)2

n+m
−

(
XA

1,n

)2

n
−

(
XB

1,m

)2

m
−

2
XAB

1,n+m

n+m

n+m∑
i=1

xABi + 2
XA

1,n

n

n∑
i=1

xAi + 2
XB

1,m

m

m∑
i=1

xBi = ∆σ (C.26)

we recognize the three partial sums on the second line and use eqn. C.21 to obtain:

∆σ =

(
mXA

1,n − nXB
1,m

)2

nm(n+m)
(C.27)

if we check this by inserting m = 1 we get back eqn. C.11

C.2.3 Summing energy terms

The g_energy program can also sum energy terms into one, e.g. potential + kinetic = total. For
the partial averages this is again easy if we have S energy components s:

XS
m,n =

n∑
i=m

S∑
s=1

xsi =
S∑
s=1

n∑
i=m

xsi =
S∑
s=1

Xs
m,n (C.28)

For the fluctuations it is less trivial again, considering for example that the fluctuation in potential
and kinetic energy should cancel. Nevertheless we can try the same approach as before by writing:

σSm,n =
S∑
s=1

σsm,n + ∆σ (C.29)

if we fill in eqn. C.6:

n∑
i=m

[(
S∑
s=1

xsi

)
−

XS
m,n

m− n+ 1

]2

=
S∑
s=1

n∑
i=m

[
(xsi )−

Xs
m,n

m− n+ 1

]2

+ ∆σ (C.30)
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which we can expand to:

n∑
i=m

 S∑
s=1

(xsi )
2 +

(
XS
m,n

m− n+ 1

)2

− 2

 XS
m,n

m− n+ 1

S∑
s=1

xsi +
S∑
s=1

S∑
s′=s+1

xsix
s′
i


−

S∑
s=1

n∑
i=m

[
(xsi )
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the terms with (xsi )
2 cancel, so that we can simplify to:(
XS
m,n

)2

m− n+ 1
− 2

XS
m,n

m− n+ 1

n∑
i=m

S∑
s=1

xsi − 2
n∑

i=m

S∑
s=1

S∑
s′=s+1

xsix
s′
i −

S∑
s=1

n∑
i=m

[
−2

Xs
m,n

m− n+ 1
xsi +

(
Xs
m,n

m− n+ 1

)2
]

= ∆σ (C.32)

or
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If we now expand the first term using eqn. C.28 we obtain:

−

(∑S
s=1X

s
m,n

)2

m− n+ 1
− 2

n∑
i=m

S∑
s=1

S∑
s′=s+1

xsix
s′
i +

S∑
s=1

(
Xs
m,n

)2

m− n+ 1
= ∆σ (C.34)

which we can reformulate to:
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which gives

−2
S∑
s=1

Xs
m,n

S∑
s′=s+1

n∑
i=m

xs
′
i +

n∑
i=m

xsi

S∑
s′=s+1

xs
′
i

 = ∆σ (C.37)

Since we need all data points i to evaluate this, in general this is not possible. We can then make an
estimate of σSm,n using only the data points that are available using the left hand side of eqn. C.30.
While the average can be computed using all time steps in the simulation, the accuracy of the
fluctuations is thus limited by the frequency with which energies are saved. Since this can be
easily done with a program such as xmgr this is not built-in in GROMACS.
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τT 33
εr 70
1-4 interaction 81, 124

A
accelerate group 15
Adaptive Resolution Scheme 183
adding atom types 152
AdResS see Adaptive Resolution Scheme
AMBER force field 116
Andersen thermostat 33
angle

restraint 88
vibration 77

annealing, simulated
see simulated annealing

atom see particle
type 120
types, adding see adding atom types

autocorrelation function 240
average, ensemble see ensemble average

B
BAR 56
Bennett’s acceptance ratio 56
Berendsen pressure coupling

see pressure coupling, Berendsen
see temperature coupling, Berendsen

bond stretching 74
bonded parameter 123
Born-Oppenheimer 4
branched polymers 135
Brownian dynamics 51
Buckingham potential 69
building block 122

C
center of mass group 15

center-of-mass
pulling 155
velocity 18

charge group 19, 24, 25, 102, 202
CHARMM force field 116
chemistry, computational

see computational chemistry
choosing groups 234
citing iv
CMAP 116
combination rule 68, 123, 143
Compressed position output group 15
compressibility 37
computational chemistry 1
Computational Electrophysiology 169
conjugate gradient 52, 194
connection 126
constant, dielectric see dielectric constant
constraint 4

algorithms 46, 126, 211
force 149
pulling 156

constraints 26, 60
correlation 240
Coulomb 69, 98
covariance analysis 246
cut-off 4, 71, 102, 203, 205
Cut-off schemes 19

D
database

hydrogen ∼ see hydrogen database
termini ∼ see termini database

default groups 234
deform 227
degrees of freedom 172
dielectric constant 70, 203
diffusion coefficient 242
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dihedral 80
restraint 88
improper ∼ see improper dihedral
proper ∼ see proper dihedral

dipolar couplings 93
dispersion 67

correction 109, 205
distance restraint 89, 217

ensemble-averaged ∼
see ensemble-averaged distance restraint

time-averaged ∼
see time-averaged distance restraint

disulfide bonds 135
do dssp 261
do multiprot 262
do shift 262
dodecahedron 13
domain decomposition 59
double precision see precision, double
Drude 96
dummy atoms see virtual interaction sites
dynamic load balancing 59
dynamics

Brownian ∼ see Brownian dynamics
Langevin ∼ see Langevin dynamics
mesoscopic ∼

see mesoscopic dynamics
stochastic ∼ see stochastic dynamics,

see stochastic dynamics

E
Einstein relation 242
electric field 227
electrostatics 201
eneconv 262
energy

file 276
minimization 51, 196
kinetic ∼ see kinetic energy
potential ∼ see potential energy

energy-monitor group 15
Enforced Rotation 158
ensemble average 1
ensemble-averaged distance restraint 91
environment variables 256

equation, Schrödinger
see Schrödinger equation

equations of motion 2, 27
equilibration 277
essential dynamics 57,

see covariance analysis
Ewald

sum 73, 107, 201
particle-mesh ∼ 73

exclusions 15, 101, 126, 213
Expanded Ensemble 58

calculations 222
extended ensemble 33

F
FENE potential 76
file

type 191
energy ∼ see energy file
index ∼ see index file
log ∼ see log file
topology ∼ see topology file
trajectory ∼ see trajectory file

files, GROMOS96 see GROMOS96 files
Flat-bottomed position restraint 87
flooding 58
force field 4, 67, 114, 152

organization 151
force-field, coarse-grained 117
Fortran 269
free energy

calculations 54, 172, 218
interactions 97
topologies 147

freedom, degrees of see degrees of freedom
freeze group 15, 43
frozen atoms 15, 43

G
g bar 56
g dipoles 261
g energy 262, 278
g nmeig 53
g nmens 53
g tune pme 261
g wham 261
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Generalized Born methods 64
genion 145
gmx

anaeig 248
analyze 248
angle 243
covar 248
density 253
dipoles 241, 242
distance 242, 245
do dssp 250
energy 237, 242
gangle 244
gyrate 244
hbond 248
make ndx 234
mdmat 245
mindist 245
mk angndx 234
msd 242
order 250
potential 253
rama 250
rdf 238
rms 245
rmsdist 246
rotacf 241
select 234, 236
traj 237, 253
velacc 241
view 237
wheel 250

GMXRC 256
GPUs 262
grid search 24
GROMOS96

files 115
force field 115

grompp 123, 124, 144, 145, 173, 261
group 14

accelerate ∼ see accelerate group
center of mass ∼

see center of mass group
charge ∼ see charge group,

see charge group

Compressed position output ∼
see Compressed position output group

energy-monitor ∼
see energy-monitor group

freeze ∼ see freeze group,
see freeze group

planar ∼ see planar group
temperature-coupling ∼

see temperature-coupling group
groups 145, 233

choosing ∼ see choosing groups
default ∼ see default groups

H
harmonic interaction 126
heme group 135
Hessian 53
html manual 191
hydrogen database 131

I
image, nearest see nearest image
implicit solvation 64

parameters 125
improper dihedral 80
index file 234
integration timestep 76
integrator

leap-frog ∼ see leap-frog integrator
velocity Verlet ∼

see velocity Verlet integrator
interaction list 101
Interactive Molecular Dynamics 188
intramolecular pair interaction 124
isothermal compressibility 37

K
kinetic energy 26

L
L-BFGS 52
Langevin dynamics 50, 196
leap-frog integrator 27, 193
Lennard-Jones 68, 98
limitations 3
LINCS 47, 60, 99, 212
list, interaction see interaction list
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LJ-PME 111
load balancing, dynamic

see dynamic load balancing
log file 197, 277

M
Martini force field 117
mass, modified see modified mass
Maxwell-Boltzmann distribution 17
MD

units 7
non-equilibrium ∼

see non-equilibrium MD
mdrun 258–261
mechanics, statistical

see statistical mechanics
mesoscopic dynamics 2
mirror image
minimum image convention 12, 14

80
mixed precision see precision, mixed
modeling, molecular

see molecular modeling
modified mass 173
molecular modeling 1
Morse potential 75
motion, equations of

see equations of motion, see equations of motion
multiple time step 30

N
nearest image 18
neighbor

list 18, 198
searching 18, 198
third ∼ see third neighbor

ngmx 256, 261
NMA 53
NMR refinement 217

89
non-bonded parameter 122
non-equilibrium MD 15, 226
normal-mode analysis 53, 194
Nosé-Hoover temperature coupling

see temperature coupling, Nosé-Hoover

O

octahedron 13
online manual 191
OpenMP 262
OPLS/AA force field 116
orientation restraint 92, 218

P
P-LINCS 60
P3M-AD 109, 201
parabolic force 73
parallelization 58
parameter 119

bonded ∼ see bonded parameter
non-bonded ∼

see non-bonded parameter
run ∼ see run parameter

Parrinello-Rahman pressure coupling
see pressure coupling, Parrinello-Rahman

particle 119
particle-mesh Ewald see PME
Particle-Particle Particle-Mesh see P3M
PCA see covariance analysis
pdb2gmx 81, 86, 116, 122, 127, 135, 173
pencil decomposition 63
performance 269
periodic boundary conditions 11, 107, 265
planar group 80
PLUM force field 117
PME 62, 108, 201
Poisson solver 73
polarizability 45
position restraint 86, 193

Flat-bottomed ∼
see Flat-bottomed position restraint

potential
energy 25
function 114, 178

potentials of mean force 172
precision

double ∼ 255
mixed ∼ 255

pressure 26
pressure coupling 37, 208

Berendsen ∼ 37
Parrinello-Rahman ∼ 38
surface-tension ∼ 39
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principal component analysis 57,
see covariance analysis

proper dihedral 80
pulling 214

constraint ∼ see constraint pulling
rotational ∼ see enforced rotation
umbrella ∼ see umbrella pulling

Q
QSAR 1
quadrupole 120
quasi-Newtonian 194

R
reaction field 70, 98
reaction-field electrostatics 202
reduced units 9
refinement,nmr 89
REMD 56
removing COM motion 15, 18
replica exchange 56
repulsion 67
residuetypes.dat 128, 235
restraint

angle ∼ see angle restraint
dihedral ∼ see dihedral restraint
distance ∼ see distance restraint
orientation ∼ see orientation restraint
position ∼ see position restraint

rhombic dodecahedron 11
rotational pulling see enforced rotation
run parameter 193

S
sampling 45
Schrödinger equation 1
search

grid ∼ see grid search
simple ∼ see simple search

searching, neighbor see neighbor searching
selections 236
SETTLE 47, 126
SHAKE 46, 99, 212
shear 227
shell 96, see particle

model 45
molecular dynamics 196

simple search 24
simulated annealing 49, 210
slow-growth methods 54
soft-core interactions 99
solver, Poisson see Poisson solver
specbond.dat 135
statistical mechanics 2
steepest descent 52, 194
stochastic dynamics 2, 50
strain 227
stretching, bond see bond stretching
surface-tension pressure coupling

see pressure coupling, surface-tension

T
tabulated

bonded interaction function 85
interaction functions 177

targeted MD 172
temperature 26
temperature coupling 14, 31, 207

Nosé-Hoover 33
Berendsen ∼ 32
velocity-rescaling ∼ 33

temperature-coupling group 14, 26, 36
termini database 132
thermodynamic integration 56
third neighbor 101
Thole 96
time lag 240
time-averaged distance restraint 90
timestep, integration

see integration timestep
TNG 15
topology 119
topology file 136

45, 188, 197
triclinic unit cell 12
truncated octahedron 11
twin-range

cut-off 30
type

atom ∼ see atom type
file ∼ see file type

U
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umbrella pulling 156
units 7
Urey-Bradley bond-angle vibration 79

V
velocity

Verlet integrator 27
center-of-mass ∼

see center-of-mass velocity
velocity-rescaling temperature coupling

see temperature coupling, velocity-rescaling
Versatile Object-oriented Toolkit for Coarse-

Graining Applications (VOTCA) 117
vibration

angle ∼ see angle vibration
Urey-Bradley bond-angle ∼

see Urey-Bradley bond-angle vibration
virial 26, 103, 104, 265
virtual interaction sites 103, 120, 173
viscosity 176, 226, 242
VMD plug-ins 188
VOTCA package 186

W
walls 213
water 76
weak coupling 32, 37

X
XDR 191
xmgr 240, 279
XTC 15
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