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Biophysical Structures

Biomolecules: proteins, nucleic acids, lipids...

Aggregates of biomolecules: up to a cell ©

Biophysical Processes

nergetics: receive and convert energy
. synthesis and decomposition of chemical substances

nge of (lons, water...) with the surroundings



Biostructures
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Proteins, Nucleic Acids, Lipids




Questions in the Theoretical Biophysics

|. Dynamics of complex structures

= Protein folding

= Molecular motors

= Protein-DNA complexes

ll. Transport: water, ions, protons

lll. Electron transfer

V. Enzymes: why are they so efficient?
= Chemical reactions - catalysis

= Photochemistry: light -> chemical energy




First Simulation of Protein Dynamics: 9.2 ps

McCammon, Gelin & Karplus, Nature 267, 1977

BPTI

(bovine pancreatic
trypsin inhibitor)

58 AAS




BPTI + water: 210 ps

Levitt & Sharon, PNAS 85, 1988.




BPTI + water: 210 ps

Levitt & Sharon, PNAS 85, 1988.




Timeline

1687 — Newton, equations of motion

similar — Hooke, harmonic spring

1946 — molecular mechanics

1950°‘s — useful computers

1959 — Alder & Wainwright, MD of a fluid

1975 — MD of a protein — Levitt & Warshel, Gelint & Karplus
1976 — QM/MM proposed, Levitt & Warshel

1990 — significant QM/MM work, Karplus
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Protein Folding:
How does a protein find its native structure?

= accuracy of MM
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Protein Folding:
How does a protein find its native structure?
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ATPase:
Conversion of chemical energy into mechanical
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Problem: Large Systems and Long Time Scales

= systems with >100,000 atoms

= duration of relevant processes > us
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Proton transfer

Cytoplasm (CP)

Extracellular (EC) V@




First Step: Photoisomerization
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Dynamics of an electronically excited state

Retinal proteins:
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Electron transfer in DNA




Electron transfer in DNA repair
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Bacterial Reaction Center

Reaktionszentrum







Focus: understanding on the atomic scale

the structure and dynamics determine

the function and properties of biological molecules

prediction of experimentally relevant data

molecular design of materials with desired properties

U

solution of quantum mechanical many-body problem: g, v

‘P({X} {R})—E‘P({“} {R})
H=T.+T.+V.+V.+V.




Available Methods

W Continuum electrostatics
.g “Coarse graining”
7]
=
7]
o

Cl, MP e

CASPT2

| | ] | | | ] 1 ] ] ]
nm

predictivity

> L ength scale




Hybrid QM/MM

Quantum mechanics (QM)
 Bonds created/broken
» Computationally costly
 DFT, Al: ~ 50 atoms
e Semi-empirical: ~100-1000

Molecular mechanics (MM)
» Efficient for up to 100,000 atoms
* Generally — structural properties

Hybrid QM/MM

e Chemical reactions
« DFT (Al) / MM: reaction paths

e Semi-empirical / MM: “Potential of
mean force”, rates of reactions




Contact with Experimental Reality
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electronical / optical spectra
STM/AFM imaging
vibrational / IR spectra

electronic and nuclear magnetic resonance

X-ray and neutron diffraction

thermodynamic measurements



Nobel prizes for computational chemistry

1998 — for quantum chemistry
to John Pople & Walter Kohn




Nobel prizes for computational chemistry

The Nobel Prize in
Chemistry 2013

E Harvard University Photo- © S. Fisch E'r-::u:u: Wikimedia
Martin Karplus Michael Levitt S

r Arieh Warshel
The Nobel Prize in Chemistry 2013 was awarded jointly to Martin Karplus,
Michael Levitt and Arieh Warshel "for the development of multiscale

maodels for complex chemical systems”.




