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Déjà vu

Biomolecular simulation

Each atom – x , y , z coordinates
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Déjà vu

Expression for energy – the force field
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Déjà vu

Equations of motion

m · r̈ = F

Verlet integration

r̈(t) = a(t) =
F (t)

m
= − 1

m

∂V

∂r
(t)

r(t + ∆t) = 2 · r(t)− r(t −∆t) + r̈(t)∆t2
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Enhanced sampling

How to save time, and time is money
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Problem

with normal nanosecond length MD simulations:

It is difficult to overcome barriers to conformational transitions,
and only conformations in the neighborhood of the initial structure

may be sampled,
even if some other (different) conformations are more relevant,

i.e. have lower free energy

Special techniques are required to solve this problem.
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Energy barriers in simulations

Energy landscapes in large (bio)molecular systems
– multitude of almost iso-energetic minima,
separated from each other by energy barriers of various heights

Each of these minima ≡ one particular structure (conformation);
neighboring minima correspond to similar structures

Structural transitions are barrier crossings, and
the transition rate is determined by the height of the barrier.

Normal MD – only nanosecond time scales are accessible,
so only the smallest barriers are overcome in simulations,
and only small structural changes occur. k ∝ exp [−EA/kT ]

The larger barriers are traversed more rarely
(although the transition process itself may well be fast),
and thus are not observed in MD simulations.

Using quotations by Helmut Grubmüller
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Note – do not be afraid of Arrhenius

How often does something happen (in a simulation)?

k = A× exp [−EA/kT ], let us have A = 1× 109 s−1

EA k 1/k
kcal/mol 1/s µs

1 0.19× 109 0.005
3 6.7× 106 0.15
5 0.24× 106 4.2
7 8.6× 103 120

So, if the process has to overcome a barrier of 5 kcal/mol,
we will have to simulate for 4 µs to see it happen once on average.
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Replica-exchange molecular dynamics

REMD (or parallel tempering) – method to accelerate the sampling
of configuration space, which can be applied
even if the configurations of interest are separated by high barriers.

Several (identical) replicas of the molecular system are simulated
at the same time, with different temperatures.

The coordinates+velocities of the replicas may be switched
(exchanged) between two temperatures.
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Probability of replica exchange

The probability of the replica exchange between T1 and T2

is determined in (regular) time intervals from the instantaneous
potential energies U1 and U2 in the corresponding simulations as

P(1↔ 2) =

{
1 if U2 < U1,

exp
[(

1
kBT1

− 1
kBT2

)
· (U1 − U2)

]
otherwise.

Then, if P(1↔ 2) is larger than a random number from (0, 1),
the replicas in simulations at T1 and T2 are exchanged.
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Setup of the simulation of replicas

Simulated one replica at the temperature of interest (T1 = 300 K)
and several other replicas at higher temp. (T1 < T2 < T3 < . . .).

After (say) 1000 MD steps, attempt exchanges 1↔ 2, 3↔ 4 etc.,
and after next 1000 steps do the same for 2↔ 3, 4↔ 5 etc.
so only try to exchange replicas at “neighboring” temperatures
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Setup of the simulation of replicas
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Advantages of REMD

due to the simulations at high temperatures

faster sampling and more frequent crossing of energy barriers

correct sampling at all temperatures obtained,
above all at the (lowest) temperature of interest

increased computational cost (multiple simulations)
pays off with largely accelerated sampling

simulations running at different temperatures are independent
except at attempted exchanges → easy parallelization

first application – protein folding (Sugita & Okamoto, Chem. Phys. Lett. 1999)
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Choice of temperatures to simulate

Important – suitable choice of temperatures Ti – criteria:

how frequent exchanges we wish (average prob. P(1↔ 2))

the size of the system (degrees of freedom Ndof)

the number of temperatures/simulations

For protein/water systems with all bond lengths constrained:

Ndof ≈ 2N (N – number of atoms)

average probability is related to T2 − T1 = εT1 as

P(1↔ 2) ≈ exp
[
−2ε2N

]
set of temperatures may be designed to suit the problem
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Disadvantages of parallel tempering REMD

large number of atoms: low exchange probability
→ low efficiency

high temperature – sensitive biostructures may not survive
(membranes etc.)

how to apply the replica-exchange idea and avoid these issues?
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Hamiltonian replica exchange – HREX

also called ‘Replica exchange with solute tempering’ (REST)

P = exp

[
− U

kT

]
= exp [−βU]

note: 1
2U would be the same as 2T

force field energy U is combined from many individual terms
– let us scale selected terms (not all of them!)
– is not possible for temperature scaling (a single T )
– ‘heating’ of a (small) part of the system
– typically, a group of atoms – a ligand, or several AAs. . .
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Hamiltonian replica exchange – HREX

Simulations 1 and 2 are performed
with different force fields U1 and U2

How to calculate the probability of exchange?
(q1 and q2 – coordinates of atoms in simulations 1 and 2)

∆ =
U1(q2)− U1(q1)− U2(q1) + U2(q2)

kT

P(1↔ 2) =

{
1 if ∆ ≤ 0,

exp [−∆] otherwise.

Then, if P(1↔ 2) is larger than a random number from (0, 1),
the replicas in simulations with U1 and U2 are exchanged.
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HREX – a good variant

divide the system into two parts:

hot – small, will be subject to extended sampling

cold – all of the rest

Generate replicas with different λm < 1, modify parameters in hot:

scale the charges by
√
λm

scale the LJ depths ε by λm

additional scaling of dihedral angles

Then, the ‘effective’ temperatures are

inside hot: T/λm > T

interactions between hot and cold: T/
√
λm

inside cold: T is retained
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HREX

Meaning of temperature

kinetic energy ← velocities
– does not change, is the same in hot and cold (300 K)
– simulation settings need not be adjusted (time step!)
– unlike in parallel tempering

factor affecting the population of states
– we play with this
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HREX – example

Solute tempering – dialanine

alanine dipeptide – 22 atoms, 1 pair of ϕ− ψ
5 replicas, λ = 1 . . . 0.18 i.e. Tm = 300 . . . 1700 K

exchange every 0.1 ps, observed P =0.25–0.50
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HREX – example

Solute tempering – dialanine – replica #0

ϕ− ψ in degrees, ∆F in kcal/mol

Marcus Elstner and Tomáš Kubǎr Biomolecular modeling III



Enhanced sampling
Coarse-grained models

Free energy simulations
Modeling in the drug design

HREX – example

Solute tempering – dialanine – replica #1

ϕ− ψ in degrees, ∆F in kcal/mol
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HREX – example

Solute tempering – dialanine – replica #2

ϕ− ψ in degrees, ∆F in kcal/mol
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HREX – example

Solute tempering – dialanine – replica #3

ϕ− ψ in degrees, ∆F in kcal/mol
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HREX – example

Solute tempering – dialanine – replica #4

ϕ− ψ in degrees, ∆F in kcal/mol
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HREX – example

Solute tempering – dialanine – replica #5

ϕ− ψ in degrees, ∆F in kcal/mol
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Methods using biasing potentials

Other approaches use a different idea:

It is easy to introduce an additional contribution
to the potential energy of the molecule

Example – the extra potential may force the molecule
over an energy barrier, to explore other conformations

It is ‘unrealistic’ – we do not simulate a real molecule
but this bias may be removed by a right post-processing

Note: use of NMR-based distance restrains in MD simulations
→ ‘NMR-refined’ structure of the molecule (e.g. PDB ID 1AC9)
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Conformational flooding

– way to accelerate conformational transitions in MD simulations
by several orders of magnitude
– brings slow conformational transitions into the scope

First – we generate a trajectory with a normal MD simulation
Then – using this ensemble of structures, we construct

a localized artificial flooding potential Vfl:

Vfl shall affect only the initial conformation and vanish
everywhere outside of this region of conformational space

Vfl shall be well-behaved (smooth) and ‘flood’ the entire
initial potential-energy well
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Flooding potential

a multivariate (n-dimensional) Gaussian function is good:

Vfl = Efl · exp

[
− Efl

2kBT
·

n∑
i=1

q2
i λi

]

Efl – strength of the flooding potential (constant)
qi – coordinates along the first n essential dynamics modes (PCA)

Here, the first n essential dynamic modes with eigenvalues λi
will be flooded
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The course of flooding simulation

from the website of Helmut Grubmüller
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The course of flooding simulation

The flooding potential is added to the force field,
and ‘flooding’ (biased) simulations are performed.

The energy minimum of the initial conformation is elevated
→ the height of barriers is reduced
→ the transitions are accelerated (TS theory)

Note: we have modified only the energy landscape within the
minimum where the dynamics is already known, i.e. uninteresting
The barriers and all the other minima – which we are interested in
– are not modified at all.

CF is expected to induce unbiased transitions – those which would
be observed without flooding, on a much longer time scale.

Marcus Elstner and Tomáš Kubǎr Biomolecular modeling III
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Metadynamics

– aimed at reconstructing the multidimensional free energy of
complex systems (Laio & Parrinello 2002)

– based on an artificial dynamics (metadynamics) performed
in the space of a few collective variables S (e.g. normal modes)

– at regular time intervals during the simulation,
an additional biasing energy function is added to the force field

– a Gaussian that is centered on the current structure

using quotations by Alessandro Laio
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Metadynamics – how it works

a new Gaussian is added at every time interval tG ,
and the biasing potential at time t is given by

VG (S(x), t) =
∑

t′=tG ,2tG ,3tG ,...

w · exp

[
−(S(x)− st′)

2

2 · δs2

]

w and δs – height and width of the Gaussians
st = S(x(t)) – value of the collective variable at time t

In the course of the simulation, this potential is filling the minima
on the free energy surface that the system is traveling through.

So, the MD has a memory via the biasing potential
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Metadynamics – what it looks like

https://www.youtube.com/watch?v=IzEBpQ0c8TA
https://www.youtube.com/watch?v=iu2GtQAyoj0
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Properties of metadynamics

Metadynamics – to explore new reaction pathways,
accelerate rare events,
and also to estimate the free energies efficiently.

The system escapes a local free energy minimum
through the lowest free-energy saddle point.

The dynamics continues, and all of the free-energy profile
is filled with the biasing Gaussians.

At the end, the sum of the Gaussians provides
the negative of the free energy.
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Properties of metadynamics

Crucial point – identify the collective variables of interest
that are difficult to sample because of high barriers

These variables S(x) are functions of the coordinates of the system;
practical applications – up to 3 such variables,
and the choice depend on the process being studied.

Typical choices – principal modes of motion obtained with PCA
Still, the choice of S may be difficult
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Example – opening of a protein binding pocket

clamshell twisting rocking

courtesy Tino Wolter
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Example – opening of a protein binding pocket

courtesy Tino Wolter
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Enhanced sampling methods – comparison

Biasing potential methods – metadynamics, umbrella sampling

required: a priori choice of reaction coordinate(s) to be biased

problem – success depends on that choice, possibly non-trivial

REMD with parallel tempering

+ no such required, can be used rather blindly

− all of the system heated → may destroy something

− no knowledge of the system may be embedded

− poor efficiency for big systems: P(1↔ 2) ≈ exp
[
−2ε2N

]
→ critical problem
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Enhanced sampling methods – comparison

Hamiltonian replica exchange (HREX)

in intermediate position
between metadynamics/US and REMD-PT

simpler to use than metadynamics/US
– results depend not so strongly on the choices to be made

efficiency does not depend on the overall system size
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Coarse-grained models
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United-atom force fields

Early biomolecular force fields (e.g. Weiner 1984)
– united-atom approach
– hydrogen atoms considered as condensed to the heavy atom
– mass and charge represent such a group of atoms as a whole
– number of atoms reduced considerably relative to all-atom FF
– popular in the 1990’s

This approach works very well for non-polar C–H bonds,
so a methyl group constituting of one united atom works good.

A substitution of a polar O–H group by a single particle
would be very crude (without any correction terms in FF)
→ only non-polar hydrogens are usually condensed with heavy
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United-atom force fields

– still used e.g. to describe lipids, where each CH2 is a united atom

– simulation of a DOPC bilayer in water – Berger FF for the lipid

from the website of Rainer Böckmann
Marcus Elstner and Tomáš Kubǎr Biomolecular modeling III



Enhanced sampling
Coarse-grained models

Free energy simulations
Modeling in the drug design

United-atom and coarse-grained force fields

(A) united-atom, (B) specific and (C) generic coarse-grained
from Marrink et al., Biochim. Biophys. Acta 2009
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Coarse-grained models

Coarse graining – an advanced and sophisticated approach
to reduce the computational expense of simulations

The same idea – reduction of the number of particles
Considered are particles composed of several atoms – beads
The number of inter-particle interactions decreases,

reducing the computational expense largely.

The necessary parameters of the force field are often obtained
by fitting to all-atom force fields.
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Coarse-grained models

Every bead usually represents several atoms,
and a molecule is composed of several beads.

For the solvent, there is e.g. a ‘water bead’
composed of four H2O molecules.

Note that some of the transferability of all-atom FF is lost
– e.g. secondary structure of proteins is fixed with Martini FF

Also, hydrogen bonding cannot be described with beads!
solution – compensation with Lennard-Jones contributions

Such CG force fields are particularly useful for simulations
of large-scale conformational transitions, which involve
exceedingly large molecular systems, excessive time scales,

or both.
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Martini force field

left – mapping of beads onto molecular fragments with Martini FF
– 3 to 4 heavy atoms compose one bead (‘4-to-1 mapping’)
– mass of beads – 72 u (= 4 H2O), or 45 u in ring structures

right – a solvated peptide with Martini

from the Martini website

Marcus Elstner and Tomáš Kubǎr Biomolecular modeling III



Enhanced sampling
Coarse-grained models

Free energy simulations
Modeling in the drug design

Martini force field

The CG force field Martini – amino acids

from Monticelli et al., J. Chem. Theory Comput. 2008
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Acceleration of the simulation

Why does a coarse-grained simulation run faster?

smaller number of particles → fewer interactions

long integration time step due to large masses of beads
– 25 fs with Martini (i.e. 100 fs effectively, see below)

FF often constructed for use with faster simulation algorithms
– e.g. cut-off for electrostatics with Martini

smaller number of DoF → smoother free energy surfaces
→ fewer barriers → acceleration of all processes
(by a factor of 3 to 8 for Martini, but not uniformly!

– factor of 4 for acceleration of diffusion in water)

“. . . length and time scales that are 2 to 3 orders of magnitude
larger compared to atomistic simulations, providing a bridge
between the atomistic and the mesoscopic scale.”
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Coarse-grained models

Another example – Vamm force field for proteins,
where every amino acid is represented by a single bead at C-α.

from Korkut & Hendrickson 2009
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Free energy simulations
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Motivation

a physical quantity that is of most interest in chemistry?
free energies – Helmholtz F or Gibbs G
– determine whether processes (reactions) run spontaneously or not
– holy grail of computational chemistry,

both for their importance
and because they are difficult to calculate
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Convergence issue

(all of the formulas come from statistical thermodynamics)

– especially desperate for free energies:

F = kBT · ln
〈

exp

[
E

kBT

]〉
serious issue – the large energy values enter an exponential,

and so the high-energy regions may contribute significantly!
→ if these are undersampled, then free energies are wrong

– calculation of free energies impossible, special methods needed!
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Tackling the issue

two fundamental approaches:
free energy perturbation and thermodynamic integration

several computational tricks for particular types of reactions:
alchemical simulations or umbrella sampling

important: not necessary to find the absolute value of free energy;
for a chemical reaction, we only need
the free energy difference (∆F , ∆G ) of reactant and product

“reaction” – not necessarily chemical bonds created or broken
– ligand binding a protein, passage of a molecule through

membrane, protein folding
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Tackling the issue

Note on ∆F vs. ∆G :

∆F is obtained in NVT simulations
∆G is obtained in NPT simulations
– automatically, with otherwise identical simulation protocols

In this presentation, we write F .
Everything applies to G as well.
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Free energy perturbation

Zwanzig formula (1954):

∆F (A→ B) = −kBT ln 〈exp[−β(EB − EA)]〉A
∆F (B → A) = −kBT ln 〈exp[−β(EA − EB)]〉B

Simulate the state A (reactant) and obtain the free energy
by averaging the exponential of the difference
of energies of states B and A

or vice versa
(simulate the product, and evaluate the exp of energy difference)
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Examples of use

Free energy of deprotonation (pK)
of an amino acid side chain in a protein

– we would simulate the protonated species,
and then evaluate the energy difference between protonated and
unprotonated species to get the average of exp[−β(EB − EA)].

The ionization of a molecule

– we would simulate the neutral species and evaluate the energy
differences.
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Examples of use

Deprotonation of amino acid (left), ionization of molecule (right),
both hydrated
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Advantage of FEP

evaluate directly the difference of energies,
no need to sample for the (large) total energies first

evaluate the free energy difference directly in one simulation
– it is not important what happens outside of the region
where the reaction takes place (no contrib. to EB − EA)

the cluster of structures that have to be sampled thoroughly
is much smaller, and shorter simulation length is required
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FEP in use – requirements

overlap of structural clusters of the reactant and the product
(similar structures of the reactant and product)
– this includes the close neighborhood of the ‘reaction center’

scheme of structural clusters (‘phase space densities’)
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FEP in use – requirements

What happens if this is not the case?
The simulation of reactant hardly gives molecular structures
for which the product has low energy
→ this structural cluster is undersampled, the averaging

of the energy EB is wrong → no convergence

We can expect this problem whenever

|EB − EA| > kBT
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FEP in use – connecting the end states

How to overcome this problem?
insert an intermediate overlapping with both reactant and product:

free energy is a state function, and so

∆F (A→ B) = ∆F (A→ 1) + ∆F (1→ B)
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FEP in use – connecting the end states

We can perform two MD simulations, one for each of the states
A and 1, and evaluate free energies for the two reactions.

These may be expected to converge better,
and their sum gives the free energy of A→ B:

∆F (A→ B) = ∆F (A→ 1) + ∆F (1→ B)

If the difference is large, we can insert more than one intermediate,
and for N intermediates 1, 2, . . . ,N, we obtain

∆F (A→ B) = ∆F (A→ 1) + ∆F (1→ 2) + . . .+ ∆F (N → B)

and we have to perform N + 1 simulations of states A, 1, 2, . . . ,N.
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FEP in use – connecting the end states

We can perform two MD simulations, one for each of the states
A and 1, and evaluate free energies for the two reactions.

These may be expected to converge better,
and their sum gives the free energy of A→ B:

∆F (A→ B) = ∆F (A→ 1) + ∆F (1→ B)

If the difference is large, we can insert more than one intermediate,
and for N intermediates 1, 2, . . . ,N, we obtain

∆F (A→ B) = ∆F (A→ 1) + ∆F (1→ 2) + . . .+ ∆F (N → B)

and we have to perform N + 1 simulations of states A, 1, 2, . . . ,N.
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FEP in use

FEP looks complicated, but it is rather straightforward,
and the common simulation programs run FEP calculations
conveniently.

We can change the chemical identities of atoms or functional
groups – computational alchemy.

Using a parameter λ, the force-field parameters of state A
are changed to those of state B gradually:

Eλ = (1− λ) · EA + λ · EB
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Examples

The hydration free energy difference of argon and xenon

The two atoms differ only in the vdW parameters
– the well depth ε and the radius σ.

We interpolate between the parameters for the two elements:

ελ = (1− λ) · εA + λ · εB
σλ = (1− λ) · σA + λ · σB

In the simulation, we start from λ = 0, i.e. an argon atom,
and change it in subsequent steps to 1.

For each step (window), we perform an MD simulation
with the corresponding values of the vdW parameters,
and calculate the free energy difference.
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Examples
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Examples

A true chemical reaction: HCN → CNH

More complicated
– we have both molecules simultaneously in the simulation.

We gradually switch off the interaction of one species
with the solvent during the simulation
while we switch on the other at the same time.
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Thermodynamic integration

TI – an alternative way to free energies.

Think of free energy as function of λ: F = F (λ),
with λ = 0 for reactant, λ = 1 for product

∆F = F (B)− F (A) =

∫ 1

0

∂F (λ)

∂λ
dλ

Essence of TI – the derivative of free energy F with respect to λ
is calculated as the average of derivative of total MM energy E ,
which can be directly evaluated in the simulation:

∆F =

∫ 1

0

〈
∂Eλ
∂λ

〉
λ

dλ
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How to do it practically

We perform a MD simulation for each chosen value of λ:
usually, equidistant values in the interval (0,1) are taken:

0, 0.05, . . . , 0.95 and 1.

Each of these simulations produces a value of
〈
∂E
∂λ

〉
λ

,
so we obtain the derivative of F in discrete points for λ ∈ (0, 1).
This function is then integrated numerically,

and the result is the desired free energy difference ∆F .
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Example

Free energy of hydration of rare gas (neon)

van der Waals parameters of the neon are gradually switched off
by means of λ, so that the atom is effectively disappearing

The derivative of total energy with respect to λ is evaluated
for 21 values of λ ranging from 0 to 1.

Then, TI gives the Gibbs energy difference of two states:

a neon atom in water

no neon atom in water ≡
≡ a neon atom outside of the solution, in vacuo
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Example
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Choice of reaction coordinate

Both FEP and TI require a coupling parameter λ, representing
the reaction coordinate (λ = 0 is reactant; λ = 1 is product).

Free energy is a state function
→ the result is independent of the chosen path

between the reactant and the product.

We are free to use even an unphysical process as the reaction
coordinate – a change of chemical identity of one or more atoms
(in the alchemical simulations).
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Choice of the number of windows

– we would like to have as few as possible,
without compromising numerical precision of the calculation.
– the factors affecting the choice are different in FEP and in TI:

FEP: the assumption is that while simulating the state A,
the low-energy regions of state B are sampled well.
The closer the windows are, the better this condition is met.

TI: the free energy derivative is always evaluated for one λ-value,
and the problem present in FEP does not occur here.
However, numerical inaccuracy may be due to the numerical
integration of the free energy derivative
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Differences of differences

Often – we are interested not in the absolute free energies
and not even in the reaction free energies,

but rather in the difference (∆) of reaction free energies (∆F )
of two similar reactions:

∆∆F or ∆∆G
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Reaction free energy difference
Example left: binding of an inhibitor molecule I to an enzyme E,
difference of binding free energies to similar enzymes E and E′:

E + I 
 EI ∆G1

E′ + I 
 E′I ∆G2
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Reaction free energy difference

The simulation of the ligand binding process itself – very difficult
(possibly large structural changes in the enzyme upon binding)

Solution of the problem – do not simulate the reaction of binding,
but rather the alchemical transmutation of enzyme E to E′.

E to E′ are very similar so this may be easy to do.
(example: mutation of a single AA, e.g. leucine to valine)
Then, the structure of complexes EI and E′I may be similar as well,
and the simulation may provide converged free energy.
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Reaction free energy difference

Free energy is a state function → the sum of free energies
around a thermodynamic cycle vanishes:

(e.g. clockwise in figure left):

∆G1 + ∆G3 −∆G2 −∆G4 = 0

The difference of binding free energies equals
the difference of free energies calculated in alchemical simulations:

∆∆G = ∆G1 −∆G2 = ∆G3 −∆G4
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Geometric reaction coordinate

Sometimes, we need to know how the free energy changes
along a geometric reaction coordinate q within a certain interval.

The free energy is then a function of q
while it is integrated over all other degrees of freedom.

Such a function F (q) is called the potential of mean force.
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Geometric reaction coordinate

Examples:

distance between two particles in a dissociating complex

the position of a proton for a reaction of proton transfer

the dihedral angle when dealing with conformational changes

Looking for the free energy at a certain value of q,
remaining degrees of freedom are averaged over (integrated out).
One could think of performing an MD simulation
and sampling all degrees of freedom except for q.
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Example

free energy of formation of an ion pair in solution:

we need to know the value of free energy
for every value of the reaction coordinate q.
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Straightforward approach

We perform an MD simulation for the system,
and then count how many times q takes the value q0:
we calculate the probability P(q0) of finding the system at q0.

Then, the free energy difference of two states A and B
(with different values of coordinate q) is

FB − FA = −kBT ln
P(qB)

P(qA)

which contains the equilibrium constant P(B)/P(A).
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Energy profile and probability distribution along the reaction
coordinate. Note the undersampled region of the barrier.
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Problem to be solved

What to do:
perform an MD simulation, specify the reaction coordinate,
and then just count how many times the reaction coordinate
takes the values in the specified bins (intervals)
→ the ratio of the counts gives the free energy difference

The problem:
If a high barrier has to be crossed to come from A to B,
a pure (unbiased) MD simulation will hardly make it
→ the high-energy region (barrier) is described poorly (for sure)
→ we may not obtain the product at all (possibly)
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Working principle

A straightforward solution:
apply an additional potential, also called biasing potential

to restrain the system to values of reaction coordinate
that would otherwise remain undersampled.

This is the principle of the umbrella sampling.

The additional potential will become a part of the force field,
and it shall depend only on the reaction coordinate: V = V (q)
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Working principle

. . . free energy follows as function of reaction coordinate, or PMF:

F (q) = −kBT lnP∗(q)− V (q) + K

An arbitrary potential V (q) is added to the system.

We obtain the biased probability P∗(q) of finding the system
at the value of the reaction coordinate for the ensemble,
which differs from the real, unbiased probability P(q), obviously.

Still, we obtain the right, unbiased free energy F (q), once we take
the biased probability P∗(q), subtract the biasing potential V (q)
and add the term K (which has to be determined yet).
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Practical PMF

We can use this scheme efficiently, by way of moving
a biasing harmonic potential along the reaction coordinate:
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Practical PMF

Example – probabilities from biased simulations – histograms

http://people.cs.uct.ac.za/˜mkuttel/images/projectImages/WHAM.png
Marcus Elstner and Tomáš Kubǎr Biomolecular modeling III
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Practical PMF

We perform k simulations with biasing potentials Vk and obtain

F (q) = −kBT lnP∗(q)− Vk(q) + Kk

For each of the k simulations, we extract the probability P∗(q)
for every value of q and easily calculate V k(q).

The curves of −kBT lnP∗(q)− V k(q) for simulations k and k + 1
differ by a constant shift, which corresponds to the difference of K :
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Practical PMF

The main task – to match the pieces of the curve together.
One way – to fit the values Kk to obtain a total F (q) curve
that is as smooth as possible.
Requirement – the pieces k and k + 1 must ‘overlap’ sufficiently.

the WHAM method – included in modern simulation programs
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Molecular modeling in the drug design

Marcus Elstner and Tomáš Kubǎr Biomolecular modeling III



Enhanced sampling
Coarse-grained models

Free energy simulations
Modeling in the drug design

Drug design

– to construct new chemical compounds interacting in a defined
way with natural materials – proteins, NA, carbohydrates. . .
– typical example – find a potent inhibitor of an enzyme, which
does not interact harmfully with other substances in the organism

– typical difficulties:

the drug has to be a potent inhibitor

it must not interact with other enzymes (might be lethal)

it must not decompose too early (to reach destination)

its metabolites must not be (too) toxic

hard and $$$ business
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Molecular docking

“Docking is a method which predicts the preferred orientation
of one molecule to a second when bound to each other
to form a stable complex.” Wikipedia

Typical pharmacological problem – find a ligand molecule to bind
to a protein as strongly and specifically as possible

Good news: the binding site (pocket) is usually known
– often, the active or allosteric place of the protein

Bad news:

many DoF – transl., rot. and internal flex. of the ligand

only a small number of molecules can be docked manually,
once the binding mode of a similar molecule is known
(and, even similar molecules sometimes bind differently)
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Molecular docking

“Docking is a method which predicts the preferred orientation
of one molecule to a second when bound to each other
to form a stable complex.” Wikipedia

Typical pharmacological problem – find a ligand molecule to bind
to a protein as strongly and specifically as possible

Good news: the binding site (pocket) is usually known
– often, the active or allosteric place of the protein

Bad news:

many DoF – transl., rot. and internal flex. of the ligand

only a small number of molecules can be docked manually,
once the binding mode of a similar molecule is known
(and, even similar molecules sometimes bind differently)
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Molecular docking

a sequence of tasks:

1 Generate the pool of compounds to test – database of
compounds, construction from a database of moieties,. . .

2 For each compound, find the binding mode. For this,
try out several/many orientations and conformations (poses),
and determine the most favorable

3 Evaluate the strength of the interaction.
Accurate determination of ∆Gbind impossible;
instead, a scoring function is employed
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Molecular docking

Various levels of approximation may be employed

The simplest approach – exploit a database of molecules, and
try to fit each molecule as a rigid body into the binding pocket
A natural expansion – consider the flexibility of the ligand

How to generate different configurations of the molecule?

simple minimization or molecular dynamics

Monte Carlo, perhaps combined with simulated annealing

genetic algorithms

Efficient alternative – incremental construction of the ligand,
which is partitioned into chemically reasonable fragments

– natural account for the conformational flexibility of the molecule
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Molecular docking

problem of docking – it is all about sampling

No way to do molecular dynamics for every candidate molecule:

MD takes much longer than what is affordable
(would be OK for one ligand, but there are too many)

MD would probably work only for quite rigid molecules moving
relatively freely in the binding pocket (usually not the case)

Difference:

If the goal is to dock a single molecule – a thorough search is
affordable, involving MD, enhanced sampling. . .

If we have to dock and assess many candidate ligands
– simpler approaches have to be chosen
– current state of the art – consider the flexibility of ligands
– flexibility of protein (side chains) under development
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Scoring function

needed: extremely efficient way to quantify the strength of binding

1 to find the right binding mode of each ligand

2 to compare the strength of binding of various ligands.

the quantity of interest – binding free energy
problem with free energy methods – too inefficient for docking
what we need here – a simple additive function to approximate
∆Gbind, which would give a result rapidly, in a single step
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Scoring function

∆Gbind = ∆Gsolv + ∆Gconf + ∆Gint + ∆Grot + ∆Gt/r + ∆Gvib

∆Gsolv – change of hydration (ligand, protein) upon binding
∆Gconf – deformation energy of the ligand (forced by the pocket)
∆Gint – ‘interaction energy’ – a favorable contribution

due to the specific ligand–protein interactions
∆Grot – loss of entropy due to the frozen rotations
approx. +RT log 3 = 0.7 kcal/mol per 3-state rotatable bond
∆Gt/r – loss of trans. and rot. entropy upon association

– approx. the same for all ligands of similar size
∆Gvib – change of vibrational modes – difficult, often ignored
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Scoring function

a ‘force field’ for the free energy of binding

problem – although approximative, it is still too costly

usually, very simple constructions, looking over-simplified in
comparison with MM force fields; example (Böhm, 1994):

∆G = ∆G0 + ∆GHbond ·
∑

Hbonds

f (R, α) + ∆Gionpair ·
∑

ionpairs

f ′(R, α)

+ ∆Glipo · Alipo + ∆Grot · Nrot

∆GHbond – ideal hydrogen bond
f (R, α) – penalty function for a realistic hydrogen bond
∆Gionpair and f ′(R, α) – dtto for ionic contacts
∆Glipo – due to hydrophobic interaction; non-polar SA Alipo

∆Grot – due to a rotatable bond that freezes upon binding
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Scoring function

Further concepts present in other scoring functions:

partitioning of the surface areas of both the proteins and the
ligand into polar and non-polar regions, and assigning
different parameters to the interactions of different kinds of
regions (polar-polar, polar-nonpolar, nonpolar-nonpolar)

statistical techniques to parametrize the scoring function

Problem – such s.f. only describe well ligands that bind tightly
Modestly binding ligands

– of increasing interest in docking studies
– more poorly described by such functions

Possible solution – ‘consensus scoring’ – combining results from
several scoring functions; performs better than any single s.f.
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Scoring function

Comment on accuracy

an error of ∆Gbind of 1.4 kcal/mol
→ ten-fold increase/decrease of the inhibition constant

or: as little as 4.2 kcal/mol of ∆Gbind lies
between a micro- and a nanomolar inhibitor

Therefore, the requirements on the accuracy of s.f.
are actually rather big
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De novo design of ligands

It may be a good idea to construct the ligand ‘from scratch’
– without relying on the content of a database.

2 basic types of de novo design:

outside–in: Binding site is analyzed and tightly-binding ligand
fragments are proposed. They are connected (db of linkers)
→ molecular skeleton of the ligand → actual molecule.

inside–out: ‘growing’ the ligand in the binding pocket, driven
by a search algorithm with a scoring function.
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Molecular docking

Glossary of terms

receptor / host / lock

ligand / guest / key

docking

binding mode – position and orientation of ligand

pose – a candidate for the binding mode

scoring – determine how favorable a pose is

ranking – of the poses to determine the binding mode

Marcus Elstner and Tomáš Kubǎr Biomolecular modeling III


	Enhanced sampling
	Coarse-grained models
	Free energy simulations
	Modeling in the drug design

